SC20 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Toward Online Steering of Flame Spray Pyrolysis Nanoparticle Synthesis


Workshop:XLOOP 2020: 2nd Annual Workshop on Extreme-Scale Experiment-in-the-Loop-Computing

Authors: Maksim Levental (University of Chicago; University of Chicago, Argonne National Laboratory); Ryan Chard and Joseph A. Libera (Argonne National Laboratory (ANL)); Kyle Chard and Aarthi Koripelly (University of Chicago); Jakob R. Elias and Marcus Schwarting (Argonne National Laboratory (ANL)); Ben Blaiszik (University of Chicago); Marius Stan and Santanu Chaudhuri (Argonne National Laboratory (ANL)); and Ian Foster (University of Chicago)


Abstract: Flame Spray Pyrolysis (FSP) is a manufacturing technique to mass produce engineered nanoparticles for applications in catalysis, energy materials, composites and more. FSP instruments are highly dependent on a number of adjustable parameters, including fuel injection rate, fuel-oxygen mixtures and temperature, which can greatly affect the quality, quantity and properties of the yielded nanoparticles. Optimizing FSP synthesis requires monitoring, analyzing, characterizing and modifying experimental conditions. Here, we propose a hybrid CPU-GPU Difference of Gaussians (DoG) method for characterizing the volume distribution of unburnt solution, to enable near-real-time optimization and steering of FSP experiments. Comparisons against standard implementations show our method to be an order of magnitude more efficient. This surrogate signal can be deployed as a component of an online end-to-end pipeline that maximizes the synthesis yield.





Back to XLOOP 2020: 2nd Annual Workshop on Extreme-Scale Experiment-in-the-Loop-Computing Archive Listing



Back to Full Workshop Archive Listing