SC20 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Integration of Domain Knowledge Using Medical Knowledge Graph Deep Learning for Cancer Phenotyping

Workshop:CAFCW20: Sixth Computational Approaches for Cancer Workshop

Authors: Mohammed Alawad (Oak Ridge National Laboratory)

Abstract: A key component of deep learning (DL) for natural language processing (NLP) is word embeddings. Word embeddings that effectively capture the meaning and context of the word that they represent can significantly improve the performance of downstream DL models for various NLP tasks. Many existing word embeddings techniques capture the context of words based on word co-occurrence in documents and text; however, they often cannot capture broader domain-specific relationships between concepts that may be crucial for the NLP task at hand. In this paper, we propose a method to integrate external knowledge from medical terminology ontologies into the context captured by word embeddings. Specifically, we use a medical knowledge graph, such as the unified medical language system (UMLS), to find connections between clinical terms in cancer pathology reports. This approach aims to minimize the distance between connected clinical concepts. We evaluate the proposed approach using a Multitask Convolutional Neural Network (MT-CNN) to extract six cancer characteristics – site, subsite, laterality, behavior, histology, and grade – from a dataset of 900K cancer pathology reports. The results show that the MT-CNN model which uses our domain informed embeddings outperforms the same MT-CNN using standard word2vec embeddings across all tasks, with an improvement in the overall micro- and macro-F1 scores by 4.97% and 22.5%, respectively.


Back to CAFCW20: Sixth Computational Approaches for Cancer Workshop Archive Listing

Back to Full Workshop Archive Listing