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I. INTRODUCTION

FPGAs have attracted a wider scope of HPC researchers
in the recent years thanks to the HLS (High Level Synthe-
sis) languages and techniques, such as those introduced for
OpenCL. They present a higher abstraction level, reducing
the programming effort. However, the user still has to take
care of details related to command queue management, kernel
launching parameters or data transfers. This leads to cumber-
some code that is difficult to develop and maintain and hinders
the integration of FPGAs in heterogeneous systems.

More abstract languages are being introduced, like SYCL
or DPC++ for Intel oneAPI. They use modern C++ concepts
and programming abstractions, and they typically advocate a
single source code for both host code and device kernels.
A different approach can be found in the Controller [1]
model. It is a heterogeneous programming model that enables
performance portability across CPU-core sets, GPUs using
CUDA or OpenCL and Xeon Phi accelerators. It introduces
an event based model which is portable across CPUs, GPUs
and FPGAs. It allows the synchronization of tasks avoiding the
need to recompile the code targeting each different architecture
or lower-level programming model. It is implemented as a
library of functions in C99. It is compatible with any C99/C++
compiler and it is interoperable with other libraries and parallel
programming models such as OpenMP. It uses an expandable
library system that allows to integrate for any kernel both
generic common code and specialized versions for different
device vendors and families. Each kernel implementation can
exploit lower level architecture features using programming
models such as CUDA, OpenCL, or OpenMP. For example,
different kernel versions can be written for Nvidia Fermi, Volta
or Ampere architectures to better exploit their different cache
sizes, synchronization primitives, etc. The runtime selects the
most appropriate one depending on the target device chosen
during the execution. This is specially important to integrate
FPGAs in a model supporting devices such as GPUs, as the
most appropriate kernels for GPUs and FPGAs may differ
even at algorithm level. For example, implementations of
stencil programs, such as Rodinia’s Hotspot, on GPUs exploit
their wide SIMD level and shared-memory capabilities, while
efficient FPGA kernels are usually based on a completely

different shift-register algorithm with a single SIMD lane. The
Controller model also automatically detects and performs data-
transfers between host and device when needed, and can use
asynchronous techniques to overlap data-transfers with both
host and device computations.

This work extends the Controller model with a new back-
end for FPGAs that allows the automatic execution of ker-
nels on these devices without modifying the host code of
applications already implemented with this model for other
types of devices. We present preliminary experimental results
that show that our approach highly reduces the development
effort comparing with using OpenCL directly, with an almost
negligible performance overhead.

II. SUPPORT FOR FPGAS IN CONTROLLER

To integrate FPGAs in the Controller model, we introduce
a new backend module, rebuilding the pre-existing OpenCL
back-end for GPUs. We present the following contributions:
• Extension of the kernel library structure: We extend
the Controller kernel declaration mechanisms. We introduce
support for offline compilation of OpenCL kernels with Intel
AOC compiler for FPGAs, and dynamic load and execution of
kernels. This improves the possibilities for building modular
libraries of kernels for different types of devices.
• FPGAs kernel configuration: New optional parameters in
the FPGA kernel interface allows the programmer a better
tuning and improved efficiency of kernel implementations for
specific devices. They allow the control of features such as the
number of SIMD lanes or the number of replicas of compute
units. They are used to generate different binaries at compile
time that are added to the kernel implementations library.
• Support for three execution modes: The execution mode
(either ordinary, emulation or profiling) is also determined in
compile-time. Our proposal allows to pre-compile versions of
the same kernel with the same parameterization in all the three
modes. The execution mode is selected at runtime with an
optional parameter during the creation of a controller object
associated to an FPGA. The object internally selects the proper
version when kernel launch operations are requested during the
execution of the portable host code.
• Support for incongruent grid sizes: Data structures whose
dimensions are not multiple of the work-group sizes were
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Fig. 1: Performance results for Hostpot and Matrix Pow (matrix size) and Sobel (iterations).

transparently supported in the Controller model through a
boundary condition that tested whether a given thread was
outside of requested boundaries. However, in FPGAs this
would lead to branch-divergence, which is not supported
by AOC in SIMD kernels. We introduce an alternative and
transparent padding mechanism for data-structures that is more
appropriate for FPGA kernels.
• Synchronous and asynchronous execution policies with
automatic data-transfers: FPGAs support of synchronization
mechanisms is sometimes limited comparing with GPUs. For
example, devices may not allow full-duplex data transfers
from-to the device simultaneously. Both the synchronous and
asynchronous execution policies of the Controller model are
adapted and supported in the new FPGA backend.

III. EXPERIMENTATION

An experimental study is conducted to assess the perfor-
mance efficiency of these new abstractions, and to compare
the development effort reduction comparing with directly
programming the FPGAs with OpenCL. Streaming implemen-
tations of three case studies that span a wide range of problems
were chosen: Hotspot [2], Matrix Power [3] and Sobel Filter
[4] iteratively applied to each frame of a YUV video file.
Hotspot is a benchmark with a low computational cost kernel,
whilst Matrix Power kernel has a higher order of complexity,
leading to a much highly loaded kernel. Data transfers and
host processing of partial results are added every fixed set of
iterations to introduce opportunities to exploit asynchronous
data-transfer and host/device computations overlapping. Fast
kernels and data transfers make the Sobel Filter program very
demanding in terms of this kind of concurrency exploitation.
Every experiment was executed 10 times. We design scenarios
that range from more costly data transfers than computations,
to more costly computations than data transfers, etc. We
explore several matrix sizes for Hotspot and Matrix Power,
and different number of iterations for the Sobel Filter.

Figure 1 shows that the performance overhead introduced
by Controller is negligible and the asynchronous policy au-
tomatically leads to performance improvements. In the Sobel
case, the small data sizes lead to very fast kernel computations
and data transfers, where the sophisticated and light task and
event management of Controller show an advantage even with
the synchronous policy. The results indicate an overhead of

Case study Version LOC TOK CCN Halstead

Hotspot
Ctrl 230 1772 40 919321

OpenCL Sync 339 2771 57 1770315
OpenCL Async 401 3273 53 2332285

Matrix Pow
Ctrl 148 1509 21 525721

OpenCL Sync 211 1922 30 1243644
OpenCL Async 271 2348 29 1646456

Sobel filter
Ctrl 137 1231 22 907566

OpenCL Sync 202 1944 28 1207349
OpenCL Async 290 2561 38 1689124

TABLE I: Measurements of development effort metrics for the
reference and Controller codes.

no more than 1% with a 95% confidence. There are reports
showing that the performance obtained with other high-level
models such as SYCL/DPC++ are also comparable with the
performance obtained with OpenCL programs [5].

Table I shows the results of four development effort metrics
considered: Lines of codes (LOC); Number of tokens (TOK);
McCabe’s cyclomatic complexity (CCN) [6]; and Halstead
Development Effort [7]. The use of the Controller model
shows a high reduction in development effort. This is specially
significant in the asynchronous version, due to the manual
introduction of more complex mechanisms for kernel and data
transfer synchronization in the OpenCL versions.

IV. CONCLUSIONS

This work extends the Controller heterogeneous program-
ming model with a new back-end that supports FPGAs. The
experimental results show that it achieves similar performance
as directly programming with OpenCL, with a high reduction
on development effort. Finally, on-going and future work
include a direct comparison with SYCL/DPC++ using the
same benchmarks, and integration of HDL kernels for a
finer programmer tuning and higher performance gains. The
software, case study programs and experimental data can be
downloaded at http://trasgo.infor.uva.es/controller/.
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