SC20 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Distributed-Memory Parallel Symmetric Nonnegative Matrix Factorization

Authors: Srinivas Eswar and Koby Hayashi (Georgia Institute of Technology), Grey Ballard (Wake Forest University), Ramakrishnan Kannan (Oak Ridge National Laboratory (ORNL)), and Richard Vuduc and Haesun Park (Georgia Institute of Technology)

Abstract: We develop the first distributed-memory parallel implementation of Symmetric Nonnegative Matrix Factorization (SymNMF), a key data analytics kernel for clustering and dimensionality reduction. Our implementation includes two different algorithms for SymNMF, which give comparable results in terms of time and accuracy. The first algorithm is a parallelization of an existing sequential approach that uses solvers for nonsymmetric NMF. The second algorithm is a novel approach based on the Gauss-Newton method. It exploits second-order information without incurring large computational and memory costs. We evaluate the scalability of our algorithms on the Summit system at Oak Ridge National Laboratory, scaling up to 128 nodes (4096 cores) with 70% efficiency. Additionally, we demonstrate our software on an image segmentation task.

Back to Technical Papers Archive Listing