SC20 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Massive Parallelization for Finding Shortest Lattice Vectors Based on Ubiquity Generator Framework

Authors: Nariaki Tateiwa (Kyushu University); Yuji Shinano (Zuse Institute Berlin); Satoshi Nakamura (Nippon Telegraph and Telephone Corporation); and Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, and Katsuki Fujisawa (Kyushu University)

Abstract: Lattice-based cryptography has received attention as a next-generation encryption technique, because it is believed to be secure against attacks by classical and quantum computers. Its essential security depends on the hardness of solving the shortest vector problem (SVP). In cryptography, to determine security levels, it is becoming significantly more important to estimate the hardness of the SVP by high-performance computing. In this study, we develop the world's first distributed and asynchronous parallel SVP solver, the MAssively Parallel solver for SVP (MAP-SVP). It can parallelize algorithms for solving the SVP by applying the Ubiquity Generator framework, which is a generic framework for branch-and-bound algorithms. The MAP-SVP is suitable for massive-scale parallelization, owing to its small memory footprint, low communication overhead, and rapid checkpoint and restart mechanisms. We demonstrate the performance and scalability of the MAP-SVP by using up to 100,032 cores to solve instances of the Darmstadt SVP Challenge.

Back to Technical Papers Archive Listing