
1

Deploying Checkpoint/Restart
for Production Workloads at

NERSC

Acknowledgements:
Rohan Garg, Twinkle Jain, and Prashant Chouhan at
Northeastern University, Harsh Khetawat at North Carolina
State University, and Tiffany Connors, Stephen Leak, and
Christopher Samuel at NERSC.

Zhengji Zhao1), Rebecca Hartman-Baker1),
and Gene Cooperman2)

1)NERSC at Lawrence Berkeley National Laboratory
2)Northeastern University

State of the Practice Talks at SC20
November 17 , 2020

2

● Introduction and Motivation for this Work

● DMTCP and MANA

● Enabling MANA/DMTCP for NERSC Workloads

● Promoting C/R Uptake by NERSC Users

● C/R Use Cases

● Summary and Future Work

Outline

Introduction and Motivation for this Work

4

About NERSC

● Primary HPC Center for US DOE Office of Science
○ ~8,000 users, 900 projects, ~2500 papers/year acknowledging NERSC

● NERSC HPC systems:
○ Cori, ~30 PF Cray XC40 with 9600 Intel Xeon Phi KNL nodes & 2000

Intel Xeon Haswell nodes, Aries Dragonfly network, 2 PB Burst Buffer &
28 PB scratch file system

○ Perlmutter, arriving at end of 2020, ~150 PF Cray Cascade system with
hybrid AMD CPU/NVIDIA GPU nodes

5

NERSC Production Workloads
Cori Job Size Chart

(1/14/2020 - 9/26/2020)
Machine-Time Breakdown by Application

(1/14/2020 - 10/4/2020)

● In 2020, >22,000 different binaries run on Cori by >3,600 unique users
● Jobs run at all scales – from single node to full machine
● ~20 top applications account for >70% of computing cycles

https://my.nersc.gov/application_usage_page_v2.php https://my.nersc.gov/jobsize.php

6

What is Checkpoint/Restart (C/R)?

● Checkpointing is the action of saving the state of a running process
to a checkpoint image file

● The process can be restarted later from the checkpoint file:
continuing the execution from where it left off, on the same or
different computer

7

Why Use C/R at NERSC?

● C/R is integral to many future plans at NERSC
○ e.g., supporting real-time workloads in 2025 timeframe
○ Early C/R adoption in your workload benefits you in the long term

● Enable long-running jobs
● Improved queue turnaround

○ A job split into smaller segments could complete before full-length job
due to difficulty of scheduling long jobs

● Prepare for system failures, including PG&E Public Safety Power
Shutdowns (California wildfires, extreme weather)

8

C/R Approaches

● Application-initiated checkpointing
○ Most applications at NERSC have some internal C/R support
○ Limited, inflexible (e.g., checkpoint only at end of iteration)
○ Burden for application developers

● Transparent checkpointing
○ Flexible, can stop/resume the execution at any point
○ No extra work for application developers
○ Vital for system-level checkpointing

9

But Transparent C/R in Production Is Hard!

● MPI+OpenMP applications dominate HPC workloads
● Developing and maintaining C/R tools for HPC applications is

labor-intensive and highly
complex because of

○ Ever-changing HPC systems
○ Diverse production workloads

● Major issue: maintainability of
C/R tools over M (# of MPI
implementations) × N (# of
Networks)

Courtesy of Rohan Garg

10

But Transparent C/R in Production Is Hard! (Cont.)

● Maintaining C/R codes for production use has low priority
compared to research

● Long-term coordination between MPI library, kernel, & resource
manager/scheduler developers has proven unsustainable

● Frequent OS updates on HPC systems can easily break C/R tools
● C/R tools incur runtime overheads & impose extra work upon users

○ Hinders the uptake of the C/R approach

11

Strategies to Enable C/R for NERSC Workloads

● DMTCP and MANA as C/R tool
○ DMTCP lives completely in user space
○ No need for coordination
○ A new implementation of DMTCP called MANA (MPI Agnostic Network

Agnostic) addresses the critical M×N maintainability issue
● Promoting C/R uptake among NERSC Users

○ Variable-time job scripts, queue policies and user training
● Building an active and strong C/R Community

○ Promoting production-ready C/R tool development

DMTCP and MANA

13

DMTCP: Distributed MultiThreaded CheckPointing

● DMTCP transparently checkpoints a single-host or distributed
computation in user-space -- with no modifications to user code or
to the O/S

● DMTCP supports a variety of applications, including MPI (various
implementations over TCP/IP or InfiniBand), OpenMP, MATLAB,
Python, C/C++/Fortran, shell scripts, etc.

● It is easy to extend DMTCP with plugins, e.g., MANA

14

DMTCP Architecture: Coordinated Checkpointing

● One coordinator per computation
● One checkpoint thread per process,

executing commands from the
coordinator

● Either the checkpoint thread is active
or the user thread, but not both at
the same time

● Checkpoint files are backed up
● Everything is in user space, no

admin privileges needed

15

DMTCP Commands

● dmtcp_coordinator - Coordinates checkpoints between multiple
processes.

● dmtcp_launch -- Start a process under DMTCP control.
● dmtcp_restart -- Restart processes from a checkpoint image.
● dmtcp_command -- Send a command to the dmtcp_coordinator

remotely

16

DMTCP on Cori at NERSC

● DMTCP works with serial/threaded applications on Cori
● Original DMTCP didn’t work with Cray MPICH over Cray Aries network
● MANA for MPI workloads: a new plugin implemented in DMTCP

Cori - a Cray XC40 with a peak performance of about 30 petaflops

17

What is MANA?

● MANA for MPI: MPI-Agnostic Network-Agnostic Transparent
Checkpointing

● MANA achieves MPI agnositic by not checkpointing MPI libraries and
network agnostic by draining the network before checkpointing

○ A huge step forward towards ready-to-use C/R tools for future HPC
platforms!

● For details on the novel MANA approach to checkpointing, see
○ Rohan Garg, Gregory Price, and Gene Cooperman, “MANA for MPI: MPI-Agnostic Network-Agnostic Transparent

Checkpointing, High Performance Parallel and Distributed Computing (HPDC'19), 2019.

○ Gene Cooperman, “Checkpointing the Un-checkpointable: MANA and the Split-Process Approach”, MVAPICH User
Group Meeting (MUG'19), Columbus, Ohio. video slides

18

MANA: MPI Agnostic

● MANA employs a
“split-process” approach

○ A single process contains
two programs in its
memory address space:
upper-half and lower-half

○ Checkpoint upper-half
only, & discard lower half

○ At restart time, lower half
is re-initialized

Courtesy of Rohan Garg

19

MANA: Network Agnostic

● MANA drains network before
checkpointing

● For MPI collectives,
○ Preface all collective calls

with a trivial barrier
○ When the trivial barrier is

completed call the original
collective

○ Prevent checkpointing in the
middle of collective call

Enabling MANA/DMTCP for NERSC
Workloads

21

MANA on Cori

● Began as a research code, not ready to use for NERSC’s production
workloads on Cori

● In collaboration with the developers, NERSC interns worked on fixing
bugs & added more features over the summer

● MANA has been tested with VASP (Fortran, MPI), Gromacs (C++,
MPI+OpenMP), and HPCG (C++, MPI+OpenMP) codes

● Evaluated the checkpoint overhead with HPCG to get ready for
large-scale deployment (up to 512 ranks) on both Lustre file system
and Burst Buffer nodes

22

Fixing Bugs and Improving the Code

● MANA debugging was quite challenging
○ A memory design that works with all kinds of processors at all scales

was difficult
○ DMTCP employs many low-level tricks
○ Missing informative messages upon errors
○ Some bugs appear only at large scale

● A new design was developed to avoid overlapping of the lower-half
and upper-half memory

● Added support for hugepages memory, which is enabled by default
on Cori

Work from Prashant Chouhan Ref [3]

23

Fixing Bugs and Improving the Code (cont.)

● Added extra messages for debugging
● Fixed bugs from running with VASP, Gromacs and HPCG

○ Applications froze after multiple checkpoints were taken in sequence
○ Unsupported MPI calls were discovered in some of the computations
○ Mismatched MPI ranks with Checkpoint files

● More issues to resolve
○ Applications hang during checkpointing sometimes
○ Assertion errors during restart when using 1024 ranks or more

Work from Prashant Chouhan and Harsh Khetawat

24

C/R Overhead Evaluation

● Working to scale-up MANA, so limited scaling tests were done
● C/R overhead was evaluated using HPCG with up to 512 MPI ranks

on both Cori’s Lustre file system (cscratch1) and burst buffer
○ HPCG was run with 512 MPI ranks, 8 OpenMP threads per task on 64

Haswell nodes on Cori

 Work from Harsh Khetawat ref [4]

Lustre File System Burst Buffer Total Memory
Usage (GB)

Checkpoint Time (s) 640.3 30.1
5793.3

Restart Time (s) 110.3 39.2

25

Next Steps for MANA for Production Deployment

● Enable MANA with more applications
○ Top 20 applications account for more than 70% of the machine time

usage
● Scale up MANA for large-scale deployment
● Evaluate and improve C/R overhead for large scale jobs

○ Explore I/O options

Promoting C/R Uptake by NERSC Users

27

The “flex” Queue on Cori KNL

● To promote C/R adoption, we rolled out the “flex” queue with a 75%
charging discount in April 2019

○ To compensate the runtime overhead incurred from C/R
○ Users have to specify a minimum time of 2 hours or less
○ A flex job can use up to 256 KNL nodes for up to 48 hours

● This creates opportunities for the Slurm scheduler to perform
backfill, improving job throughput and increasing machine
utilization

28

Variable-Time Job (VTJ) Scripts

● C/R imposes extra work for users
○ Resubmitting pre-terminated jobs multiple times until the job completes

● We developed the variable-time job (VTJ) scripts to simplify this
process

● VTJ scripts add a few sbatch directives and bash functions in the
Slurm job scripts, automatically splitting a long running job into
multiple shorter ones, and self-resubmitting until the job completes

sbatch directives:
#SBATCH --time-min=2:00:00
#SBATCH --comment=48:00:00
#SBATCH --signal=B:USR1@<sig_time>
#SBATCH --requeue

bash functions
Requeue_job #trap signals
func_trap #action upon trap
parse_job #process job info

29

Variable-Time Job (VTJ) Scripts (cont.)

○ User specifies a minimum and maximum time for the jobs
○ System then finds the best time slots for these jobs & automates the

pre-terminated job resubmissions
○ User submits only one job script

● Allows better queue turnaround by utilizing backfill opportunities
● VTJ enables jobs of any length, e.g., weeks, months
● Can be used for applications with internal C/R support or

checkpointing with external C/R tools
● Users running variable-time jobs in flex queue get 75% charging

discount

30

Variable-Time Job Script with “flex” Queue

#!/bin/bash
#SBATCH -J test
#SBATCH -q regular
#SBATCH -C knl
#SBATCH -N 2
#SBATCH --time=48:00:00
#SBATCH --error=%x-%j.err
#SBATCH --output=%x-%j.out

export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=4

srun -n32 -c16 --cpu_bind=cores ./a.out

Original job script

#!/bin/bash
#SBATCH -J test_vtj
#SBATCH -q flex
#SBATCH -C knl
#SBATCH -N 2
#SBATCH --time=48:00:00
#SBATCH --time-min=2:00:00 #the minimum amount of time the job should run
#SBATCH --error=%x-%j.err
#SBATCH --output=%x-%j.out
#
#SBATCH --comment=96:00:00 #desired time limit
#SBATCH --signal=B:USR1@300 #sig_time (300 secs) should match your checkpoint
overhead time
#SBATCH --requeue
#SBATCH --open-mode=append

specify the command to use to checkpoint your job if any (leave blank if none)
ckpt_command=
max_timelimit=48:00:00

requeueing the job if remaining time >0
. /usr/common/software/variable-time-job/setup.sh
requeue_job func_trap USR1

user setting goes here
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=4

srun must execute in background and catch signal on wait command
srun -n32 -c16 --cpu_bind=cores ./a.out &

wait

Max walltime limit
on Cori

Allow allocated
time to vary

Triggers checkpoint and restart
actions before terminating the job

func_trap() {
 $ckpt_command
 scontrol requeue ${SLURM_JOB_ID}
 scontrol update JobId=${SLURM_JOB_ID}
TimeLimit=${requestTime}
}

Specify checkpoint
command if any

Execute commands in func_trap
upon receiving USR1 signal

Specify desired run time; tracking
remaining time for pre-terminated jobs

31

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/6.1.0-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Regular QOS VASP jobs

VTJ Example 1: VASP Atomic Relaxation Jobs

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/6.1.0-knl
export OMP_NUM_THREADS=4

#launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu-bind=cores vasp_std

wait

 &

#SBATCH --comment=48:00:00
#SBATCH --signal=B:USR1@300
#SBATCH --requeue
#SBATCH --open-mode=append

#put any commands that need to run to continue
#the next job here
ckpt_vasp() {
 set -x
 restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
 echo checkpointing the ${restarts}-th job

 #to terminate VASP at the next ionic step
 echo LSTOP = .TRUE. > STOPCAR
 #wait until VASP to complete the current ionic step,
 #write WAVECAR file and quit
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid

 #copy CONTCAR to POSCAR for next job
 cp -p CONTCAR POSCAR
 set +x
}

ckpt_command=ckpt_vasp
ckpt_overhead=300

#requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

32

VTJ Example 2: C/R Threaded Applications with DMTCP

#!/bin/bash
#SBATCH –J test
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test-%j.out
#SBATCH –e test-%j.err

#user setting
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

./a.out

#!/bin/bash
#SBATCH –J test_cr
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.err
#SBATCH –time-min=2:00:00

#user setting
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

module load dmtcp
#checkpointing once every hour
start_coordinator -i 3600

#run job under dmtcp control
dmtcp_launch ./a.out

#!/bin/bash
#SBATCH –J test
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.er
#SBATCH –time-min=2:00:00

#for c/r with dmtcp
module load dmtcp

#checkpointing once every hour
start_coordinator -i 3600

#restart job from dmtcp checkpoint files
bash ./dmtcp_restart_script.sh

Original Job Script

C/R Jobs with DMTCP
Manual Resubmission

#!/bin/bash
#SBATCH -J test
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C KNL
#SBATCH --time=48:00:00
#SBATCH --error=test%j.err
#SBATCH --output=test%j.out
#SBATCH --time-min=02:00:00

module load dmtcp nersc_cr
start_coordinator -i 3600 #checkpointing once every hour

#checkpoint/restart job
if [[$(restart_count) == 0]]; then
 #user setting
 export OMP_NUM_THREADS=64
 export OMP_PROC_BIND=spread
 export OMP_PLACES=threads
 dmtcp_launch -j ./a.out &
elif [[$(restart_count) > 0]] && [[-e dmtcp_restart_script.sh]]; then
 bash ./dmtcp_restart_script.sh &
else
 echo "Failed to restart the job, exit”; exit
fi

#SBATCH --comment=48:00:00
#SBATCH --signal=B:USR1@300
#SBATCH --requeue
#SBATCH --open-mode=append

requeueing the job if remaining time >0
ckpt_command=ckpt_dmtcp #additional checkpointing before pre-emption
requeue_job func_trap USR1

wait

Variable-Time Job script for C/R with DMTCP

33

User Trainings and “flex” Queue Usage

● Hosted multiple hands-on user trainings on variable-time job scripts
and DMTCP. In 2020,

○ Flex usage was 2.8% of total Cori KNL cycles, enabling over 90% system
utilization

○ 155 distinct users, 32 of them used >10,000 node hours
○ 50% of the top flex users ran variable-time jobs (per user survey)
○ 15 distinct DMTCP users with their serial/threaded workloads

● Top applications run in the flex queue include
○ VASP, NIMROD, MC_Descent, Shifter, Python, GPAW, CGYRO, QE,

CHROMA, dftfe, disco_cEDM_v2.6, asap-python, OSIRIS, main,
LAMMPS, E3SM, BerkeleyGW, CP2K, NWchem, etc.

34

User Surveys on “flex” Queue and VTJ Scripts

● Used user surveys to find out if “flex” queue serves the designated
purpose (a faster turnaround) and meet users’ needs (May 2019)

○ 50% survey participants said “no or don’t know” - increased the flex queue
priority based on user feedback as well as wait time monitoring data

○ Charging discount was helpful incentive
○ Issues: too short min time, VTJ is not easy to use, unpredictable start time

start time ● The minimum job time is smaller than
scavenger, which makes it less appealing.

● The flex QOS and NERSC's pushing of DMTCP
has been great. I write a lot of my own code, and
while it isn't too terrible to write
restart/checkpoint friendly code, having DMTCP
do that for me along with handling many of the
pitfalls of using manually restarting code (I
always have strange things happen, like that 1 in
a million code quitting when it is reading to
restart file) has been awesome for my workflow.
I eagerly await the MPI version of DMTCP to use
that with MPI compatible code too.

● It works fine and I really like the 75%
discount of the flex QOS!

● It's amazing, and I'm really grateful for the
discount, which has allowed me to study so
many more simulations. It's crazy, because
I can sometimes get a 48 hr timeslot on
flex quicker than a 2 hr times lot on knl_low
or knl_regular. Thanks!

● It would be nice to remove the restriction of
2 hours minimum. Please don't remove this
queue.

● Increase minimum time limit?

Use Cases in NERSC Workloads

36

● SPADES - a genome assembler
○ A production workload of The Joint Genome Institute at the LBNL
○ Written in Python and C++, parallelized with OpenMP

● DMTCP has enabled long running SPAdes production workloads on
Cori, and variable-time job scripts have made checkpointing and
restarting jobs more manageable
○ Fixed several bugs exposed by the SPAdes workflow: a large

number of threads, ~TB checkpoint image, deleted temporary files
required at restart

○ The largest cases with about a terabyte memory usage suffer from high
checkpoint overhead; we are looking into various I/O options

Long Running Serial/Threaded Workloads

37

VASP: Rank #1 Application at NERSC

● VASP is a widely used materials science code
○ Written in Fortran 90, parallelized with MPI (V5) or MPI + OpenMP (V6)
○ Uses FFT and linear algebra libraries, e.g. MKL, FFTW
○ Uses >20% of computing cycles; 455 active users at NERSC

● Atomic relaxation jobs have been running with VTJ + internal C/R
○ MANA which is preferred: allowing predictable checkpoint overheads &

checkpointing/restarting at any point of execution
● MANA enables VASP users to:

○ Run long-running RPA jobs that have no internal C/R support
○ Save machine time significantly for some long running VASP jobs,

which spike in memory usage in their final computation stage.

38

Gromacs and MANA

● Gromacs is a widely used molecular dynamics (MD) code
○ Written in C++, parallelized with MPI + OpenMP
○ Uses FFT, LAPACK, etc.
○ Ranked #41 at NERSC; 44 users ran Gromacs in 2020

● With MANA working with Gromacs, users can now produce the exact
same results as non-interrupted jobs for MD calculations at any point
of execution
○ While Gromacs has internal C/R, MANA’s C/R transparently saves all

states, including random seeds. This makes it an ideal tool to restart
chaotic MD simulations, for which trajectories diverge rapidly with even
slight changes in restart data.

Community Building

40

First International Symposium on Checkpointing for
Supercomputing (SuperCheck21)
● Date: Feb 4-5, 2021 (8:00 am - 12:45 pm PST)
● Online symposium featuring the latest work in checkpoint/restart

research, tools development, and production use
● Participation highly encouraged!

○ We especially encourage abstract submissions on adopting C/R tools in
production workloads

● More details at https://ckpt-symposium.lbl.gov

Summary and Future Work

42

Summary of NERSC C/R Efforts

● Enabled DMTCP for NERSC serial/threaded applications
● Enabled MANA checkpointing tool for top applications at NERSC

○ VASP (Fortran, MPI), Gromacs (C++, MPI+OpenMP)
● Developed variable-time job scripts that split a long running job into

multiple shorter ones and automate job resubmission
● Rolled out queue policies to help users adopt a C/R approach in their

production workloads
● Building an active C/R community: SuperCheck21

43

Future Work

● Enable MANA for NERSC production workloads at all scales
○ Make C/R overhead manageable at scale

● Provide user training to help users to adopt MANA
● Implement a preempt queue to support real-time workloads
● Enable MANA for our next supercomputer, Perlmutter - an NVIDIA

GPU system

44

References
1. R. Garg, G. Price, and G. Cooperman, “MANA for MPI: MPI-Agnostic Network-Agnostic Transparent

Checkpointing”, Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed
Computing, June 2019, Pages 49-60.

2. Gene Cooperman, “Checkpointing the Un-checkpointable: MANA and the Split-Process Approach”, MVAPICH User Group
(MUG'19), Columbus, Ohio. Video Slides

3. Jason Ansel, Kapil Arya, and Gene Cooperman, "DMTCP: Transparent checkpointing for cluster computations and
the desktop", IEEE International Parallel and Distributed Processing Symposium (IPDPS’09), Rome, Italy, May, 2009

4. Prashant Chouhan, et al., “Providing Fault-Tolerance to NERSC Workloads Using MANA”, to be submitted to
EuroMPI 2021

5. Harsh Khetawat, et al., “Scale-up study with DMTCP/MANA on Lustre File Systems and Burst Buffer”, to be
submitted to EuroMPI 2021

6. DMTCP: Website DMTCP code MANA code
7. NERSC Documentation

a. NERSC website checkpoint/restart (DMTCP)
b. Variable-time job scripts; github repo

8. Training Materials:
a. Variable-time job scripts for VASP users
b. Variable-time job scripts
c. DMTCP for users running serial and threaded applications

45

Acknowledgements

● Rohan Garg, Twinkle Jain, and Prashant Chouhan at Northeastern University
for developing/improving MANA and DMTCP

● Harsh Khetawat at North Carolina State University for evaluating the
checkpoint/restart overhead on Cori

● Tiffany Connors, Steve Leak, and Chris Samuel at NERSC for the
variable-time job script development and user support

● This work was supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under contract
number DE-AC02-05CH11231.

● The work of the third author was supported by National Science Foundation
Grant OAC-1740218 and by a grant by Intel Corporation.

46

Thank you!

