
Containerization on Petascale HPC Clusters

Amit Ruhela, Matt Vaughn, Stephen Lien Harrell, Gregory J. Zynda, John Fonner, Richard Todd Evans, Tommy Minyard
Texas Advanced Computing Center

Austin, Texas
E-mail : {aruhela, vaughn, sharrell, gzynda, jfonner, rtevans, minyard}@tacc.utexas.edu

Abstract—Containerization technologies provide a mechanism
to encapsulate applications and many of their dependencies, facil-
itating software portability and reproducibility on HPC systems.
However, in order to access many of the architectural features
that enable HPC system performance, compatibility between
certain components of the container and host are required,
resulting in a trade-off between portability and performance. In
this work, we discuss our early experiences running three state-
of-the-art containerization technologies on the petascale Frontera
system. We present how we build the containers to ensure
performance and security and their performance at scale. We ran
microbenchmarks at a scale of 4,096 nodes and demonstrate the
near-native performance and minimal memory overheads by the
containerized environments at 70,000 processes on 1,296 nodes
with a scientific application MILC - a quantum chromodynamics
code.

Index Terms—Petascale, HPC, Containerization, Cloud Com-
puting, Singularity, Charliecloud, Podman

I. INTRODUCTION

Containerization is a powerful tool for scientific software
development and portability across systems. It considerably
reduces the time to build, test, and deploy applications by
encapsulating code and dependencies together, allowing them
to run on diverse platforms with minimal additional effort.
HPC infrastructures provide tremendous computing capabili-
ties along with optimized message communication actualized
through advanced features like eager communication, shared
memory, and Remote Direct Memory Access, etc., making
them ideal for intensive scientific computation but challenging
for software portability. Containers provide a promising way to
hide system-level complexities, allowing researchers to focus
on productive studies that include COVID-19 research, climate
modeling, agriculture, healthcare, smart cities, e-commerce,
deep learning, etc.

Several studies in the past have focused on the performance
characterization of containerized workloads [1]–[6]. These
studies, conducted at small problem sizes, indicate near-native
performance by container-based solutions. However, none of
the prior studies have comprehensively shown the perfor-
mance, usability, and portability of state-of-the-art container
approaches at medium and large scale. This motivated us to
study the following two problems: (1) Does the performance
of container-based solutions on HPC clusters match bare-
metal runs at varying problem scales? (2) What are the
challenges and possible directions to exploit the state-of-
the-art container techniques at massive scale?

A. Contributions
To best of our knowledge, this is the first study investigating

the performance of containers at HPC petascale. In summary,
the main contributions of this paper are:

1) We present the challenges and possible approaches to
build HPC clouds with container-based approaches.

2) We present the changes required to configure container-
ization approaches on HPC infrastructures.

3) We present the overhead of state-of-the-art containers at
small, medium, and large workloads.

4) We establish the usability and portability of three
user-defined containerization stacks (Singularity, Char-
liecloud, Podman) at various problem scales.

5) We compared the performance of state-of-the-art con-
tainers at a scale of 4,096 HPC nodes with MPI mi-
crobenchmarks.

6) We compared the performance of native and container
environments on an HPC scientific application with
70,000 processes at 1,296 nodes.

II. METHODOLOGY

Out of several container runtimes, we evaluate Charliecloud,
Singularity, and Podman in this work. The goal is not to
investigate comprehensively but to manifest the simplicity,
usefulness, and performance of a few popular container types
at petascale clusters.

Containerization on HPC clusters is challenging mainly
due to access privileges and security requirements. Further,
batch processing of jobs along with container overheads adds
unique challenges to their usability. Portability of containers is
restricted by ABI compatibility between the container and host
hardware driver libraries along with instruction compatibility
with host architecture (high speed interconnect drivers, GPU
drivers, processor ISAs, processor specific compiler optimiza-
tions). For actable non-optimal performance, the container
need not utilize specialized drivers and hardware capabilities
and only ISA portability is required.

Singularity is a container platform specifically crafted for
HPC systems. Similar to other user space container systems,
Singularity bind mounts a container image and changes the
apparent root (chroot) to the container. Singularity goes a step
further to support the HPC ecosystem by mounting native
devices (e.g., GPU, network, IB) and configured filesystem
paths while also preserving Linux namespaces and user map-
ping inside the container. Singularity does not run a daemon

service, but must be installed by the root user for privilege
escalation. After building images from their own development
systems, or on HPC if fakeroot is configured, users can pull
images built with Singularity or Docker, and safely run them
on shared HPC resources. While images can be stored in the
cloud, they exist as single files on a filesystem, allowing them
to be shared and managed like all other files.

Charliecloud, a user defined software stack (UDSS), exploits
user and mount namespaces of Linux to run containers without
needing privileged operations and/or daemons. Any packaging
software capable of producing a standard Linux filesystem
can build container images that can be hosted on private or
public repositories (Dockerhub, Gitlab, NVIDIA NGC, etc.).
Charliecloud is a 800 lines of open source code that demands
minimal system control (sysctl) commands [7] to configure on
computing facilities, which elude most security risks.

Podman is a new native container runtime. It builds and
runs OCI-standard containers, but adds several attractive ca-
pabilities. Notably, it can run either individual containers or
Kubernetes-style pods (orchestrated sets of containers) and it
does so more safely and securely than Docker. As opposed
to Docker’s client/server approach (which requires privileged
access), Podman uses a traditional fork/exec model. By lever-
aging user namespaces, root-level access is not required to run
containers and additional isolation is enforced via UID sepa-
ration. Podman is an attractive emerging technology since its
CLI and user experience is nearly identical to Docker, which
could make use of containers on HPC more accessible to
end users. However, full use of Podman’s rootless capabilities
requires advanced kernel features such as version 2 cgroups
and user-space FUSE, and is not yet compatible with network
filesystems, which limited the extent to which we were able
to evaluate it on a production HPC system.

III. PERFORMANCE EVALUATION

Each experiment was conducted 10 times on the Frontera
supercomputer at the Texas Advanced Computing Center. Two
benchmarks were used, first the Intel MPI Benchmarks [8] and
second the SPP-2017 MILC Benchmark. [9]. Details about
Frontera and the benchmarks are available in the artifact
description appendix.

Figure 1a shows the performance of ”MPI Allreduce” col-
lective algorithm at 4K nodes. We observe that all three
runtimes show nearly same latency at small, medium, and
large message sizes. Figure 1b shows the total time required of
running MPI Allreduce benchmark, which includes the instan-
tiating time of containers. Correlating the two figures exposes
considerable overheads of instantiating container instances, but
once the containers are available, their runtime performance
stays on par with native runs.

Figure 2a and Figure 2b shows the performance in terms
of CG Time (time to solve conjugate gradient) and total time
of native, Charliecloud, and Singularity runtimes with MILC
application at 69,984 processes on 1,296 nodes. We observe
that all three runtimes show similar time and incur negligible
overheads. We also measured the memory consumption by

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

22 24 26 28 212 214 216 218 220

NATIVE
Charliecloud
Singularity

 30

 35

 40

 45

 50

 55

 60

22 24 26 28 210 212

La
te
nc
y

in
 u

s

Message Size
 (Bytes)

(a) MPI Allreduce

 0

 20

 40

 60

 80

 100

 120

 140

2,048 4,096

Li
n
u
x
 T

im
e
 (

se
co

n
d

s)

Nodes (PPN=1)

Native
Charliecloud
Singularity

(b) Linux Time

Fig. 1. Performance of Singularity and Charliecloud containers against native
runs at 4,096 nodes

MILC application in Figure 2c and observed that all three
runtimes consume similar memory at various problem sizes.

To explore the feasibility of using native containers in an
HPC context, we ran the exact Docker containers from our
large-scale studies on a test cluster configured to resemble
Stampede2 (but with Linux kernel 5.8.1). All workloads ran
correctly, albeit with minor (5-10%) performance degradation.
We hypothesize the additional overhead is due to podman’s
use of fuse-overlayfs and its additional inter-process isolation,
which may be resolvable with additional resource tuning. This
experiment leaves us optimistic about future use of native
containers on HPC.

Our experiments with microbenchmarks and applications
indicate that container solutions are an optimal choice for
long-running applications. However, short lived applications
are benefited from the containers when their build process is
complex or time-consuming, and if computing platforms lack
required functionalities to run the applications.

IV. CONCLUSION

Recent technological advancements in containerization run-
times have commenced a new trend of HPC software devel-
opment, which effectively reduces the build and deployment
issues caused by complex software dependencies. In this work,
we present the challenges of leveraging containerization within
HPC systems and showcased the feasibility of three state-of-
the-art container technologies. We explore the performance,
usability, and portability of container workflows through ex-
periments conducted at a petascale HPC cluster across tens of

2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

17,496 34,992 69,984

Ti
m

e
 i
n
 S

e
co

n
d

s

Native
Charliecloud
Singularity

(a) CG TIME

 0

 500

 1000

 1500

 2000

 2500

17,496 34,992 69,984

Ti
m

e
 i
n
 S

e
co

n
d

s

Native
Charliecloud
Singularity

(b) TOTAL TIME

 0

 5

 10

 15

 20

 25

 30

324 648 1,296

A
p

p
ro

x
im

a
te

 M
e
m

o
ry

 U
sa

g
e
 (

Te
ra

b
y
te

s)

Native
Charliecloud
Singularity

(c) Memory Consumption

Fig. 2. Performance of Singularity, and Charliecloud containers against
default run with MILC application at up to 70K processes

thousands of processes. We conclude that developers, testers,
and end-users can leverage containerization on HPC systems
in a performant way, at large scale, to reduce software devel-

opment and maintenance efforts. The cost of performance at
scale is to build support for high-speed interconnects, such
as InfiniBand, into the containers. This support does not,
however, exclude their use in environments that only have
more generic communications support such as TCP/IP or
shared memory.

V. ACKNOWLEDGMENT

This work is supported by UT Austin-Portugal Program, a
collaboration between the Portuguese Foundation of Science
and Technology and the University of Texas at Austin, award
UTA18-001217.

REFERENCES

[1] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, “A tale of two
systems: Using containers to deploy hpc applications on supercomputers
and clouds,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2017, pp. 74–81.

[2] C. Ruiz, E. Jeanvoine, and L. Nussbaum, “Performance evaluation of
containers for hpc,” in Euro-Par 2015: Parallel Processing Workshops,
S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E. Gómez Re-
quena, V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes, J. Weiden-
dorfer, and M. Alexander, Eds. Cham: Springer International Publishing,
2015, pp. 813–824.

[3] C. Arango, R. Dernat, and J. Sanabria, “Performance evaluation
of container-based virtualization for high performance computing
environments,” CoRR, vol. abs/1709.10140, 2017. [Online]. Available:
http://arxiv.org/abs/1709.10140

[4] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, 2013, pp. 233–240.

[5] D. Brayford and S. Vallecorsa, “Deploying scientific al networks at
petaflop scale on secure large scale hpc production systems with
containers,” in Proceedings of the Platform for Advanced Scientific
Computing Conference, ser. PASC ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3394277.3401850

[6] Y. Wang, R. T. Evans, and L. Huang, “Performant container
support for hpc applications,” in Proceedings of the Practice
and Experience in Advanced Research Computing on Rise of the
Machines (Learning), ser. PEARC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3332186.3332226

[7] “Charliecloud Documentation,” https://hpc.github.io/charliecloud/install.html.
[8] G. Slavova. Introducing Intel® MPI Benchmarks. [Online]. Avail-

able: https://software.intel.com/content/www/us/en/develop/articles/intel-
mpi-benchmarks.html

[9] Blue Waters User Portal — SPP Benchmarks. [Online]. Available:
https://bluewaters.ncsa.illinois.edu/spp-benchmarks

3

