
Algorithm Design for High Performance CFD Solvers on Structured Grids
Hengjie Wang, Aparna Chandramowlishwaran (Advisor), HPC Forge Lab, University of California-Irvine

Motivations

Contributions

CFD + Deep Learning

• Unify the network properties, edge cuts (# messages) and
communication volume into one cost function

cost = latency ⋅ cuts +
volume

bandwidth
Network Properties

Messages Generated by Partitioner

• Design new algorithms for partitioning

Group small blocks

With new cost function:

‣ REB: Recursive Edge Bisection

‣ IF: Integer Factorization

Cut large blocks:

Novel algorithms:

‣ CCG: Cut and Combine blocks Greedily

‣ GGS: Sweep blocks with Graph Growth methods

• Performance Evaluation
Evaluate the update of a Jacobi solver with Bump3D and a rocket model based on
SpaceX’s Falcon-Heavy on the Mira Supercomputer at the Argonne National Lab

‣ Bump3D: 1 large block and 4 small blocks

‣ Rocket Model: 769 blocks of various sizes

• Optimal Hybrid (MPI+OpenMP) Temporal Tiling

• Overlap Communication and Computation

WJ7
WJ13 WJ27

Up
win

d
Weno

3

Bu
rge

rs
1

2

3

S
p
e
e
d
u
p

32 Broadwell nodes, Omni-Path

Non-pipeline

Pipeline

‣ Strong and weak scalability on 16-128 Broadwell nodes

16 32 64 128
0.4

0.8

1.6

3.2

T
im

e(
s)

Weak Scaling, 4803 Cells per node

WJ7 WJ13 WJ27

Upwind WENO3 Burgers

16 32 64 128

0.1

0.8

6.4
T
im

e(
s)

Strong Scaling, 1920⇥ 1920⇥ 960 Cells

WJ7 WJ13 WJ27

Upwind WENO3 Burgers

• Support Multi-Block Structured Grids
‣ Use DeepHalo to break the inter-block dependency that

prohibits temporal tiling for multi-block structured grids

Inter-block dependency DeepHalo

‣ Evaluate with a 6-block grid on 32 Broadwell nodes

 Report Speedup over MPI-Funneled with space tiling

• Generalize Networks to Geometries Unseen in Training

‣ Transfer predictions across different geometries

✓ Unify key algorithmic knobs and network properties
into one cost function

✓ Design new partition algorithms for structured grids

✓ Outperform state-of-the-art methods by 1.5-3x

✓ Optimal hybrid temporal tiling, up to 1.9x over Pluto

✓ Pipeline computation and communication

✓ Applicable to multi-block structured girds

✓ 1.3-3.4x over MPI-Funneled with space tiling on

distributed machines

✓ Extract local flow patterns via deep learning

✓ Predict flow over arbitrary geometries

Computational Fluid Dynamics (CFD) with structured grids
has been widely utilized in many engineering disciplines
such as Aerospace Engineering, Vehicle Design, etc. Its
computation and communication are characterized by
stencils and halo exchange.

Distributed Stencil Computation

Multi-Block Structured Grid Partitioner

CFD + Deep Learning (ongoing)

Distributed Stencil Computation (SC20)

Multi-Block Structured Grid Partitioner (ICS19)

1024 nodes 2048 nodes 4096 nodes
0

0.5

1

1.5

·10�2

A

T
im

e
(
s
)

Running Time per Iteration

Communication

Computation

Others

0

0.5

1

1.5
·10�2

BCDEF

A: Greedy

B: Metis

C: REB+CCG

D: IF+CCG

E: REB+GGS

F: IF + GGS

Star and Box Stencils Halo Exchange

We identify the following key performance limitations in
start-of-the-art CFD algorithms and solvers:
• Multi-Block Structured Grid Partitioner
‣ Biased towards minimizing communication volume
‣ Use graph partitioner for complex structured grid

• Distributed Stencil Computation
‣ Temporal tiling is not directly applicable to multi-

block grids on distributed-memory systems
‣ Limited overlap of computation and communication

with temporal tiling
• CFD + Deep Learning
‣ Problem-specific surrogate, i.e., unable to predict

flow over unseen geometries in training

1024 nodes 2048 nodes 4096 nodes
0

0.5

1

1.5
·10�2

A

T
im

e
(
s
)

Running Time per Iteration

Communication

Computation

Others

0

0.5

1

1.5
·10�2

B

CDEF

A: Greedy

B: Metis

C: REB+CCG

D: IF+CCG

E: REB+GGS

F: IF + GGS

1 // t r av e r s e time

2 f o r (i n t t=0; t<tEnd;++t) {
3 // t r av e r s e b locks

4 f o r (i n t b=0;b<nBlocks;++b) {
5 g e t b l o c k s i z e (b , s i z e) ;

6 // t r av e r s e space

7 f o r (i n t i =0; i<s i z e [0] ;++ i)

8 f o r (i n t j =0; j<s i z e [1] ; ++j)

9 f o r (i n t k=0;k<s i z e [2] ++k)

10 compute (b , i , j , k) ;

11 }
12 // b locks ’ connec t i ons

13 f o r (i n t b=0;b<nBlocks;++b)

14 exchange boundary (b , nHalo) ;

15 }

1 // t r av e r s e time

2 f o r (i n t t=0; t<tEnd ; t+=tFused) {
3 // fused i t e r a i o n s

4 f o r (i n t t t =0; tt<tFused ; ++t t) {
5 // t r av e r s e b locks

6 f o r (i n t b=0;b<nBlocks;++b) {
7 g e t b l o c k s i z e (b , s i z e) ;

8 // t r av e r s e space

9 f o r (i n t i =0; i<s i z e [0] ;++ i)

10 f o r (i n t j =0; j<s i z e [1] ; ++j)

11 f o r (i n t k=0;k<s i z e [2] ++k)

12 compute (b , i , j , k) ;

13 }
14 }
15 //update deep halo

16 f o r (i n t b=0;b<nBlocks;++b)

17 exchange boundary (b , nHalo⇤ tFused) ;

18 }

WJ7
WJ13 WJ27

Up
win

d
Weno

3

Bu
rge

rs
1

2

3

S
p
ee
d
u
p

6 blocks, 32 Broadwell nodes

‣ MPI and OpenMP’s memory arrangement

k

j

P0 P1

T0

T1Nj

Nk/2
Nj

Nk

The optimal decomposition of � by 2 processes
or 2 threads. The J-K plane is 2x larger for threads.

2 × Nj × Nk

‣ Temporal Tiling

t

j

Time-Space Tile

Fuse 5 iterations (5 colors) and
reuse J-K planes while they reside
in cache. Small J-K planes are
easy to fit in cache.

‣ MPI+OpenMP Temporal Tiling

Decompose K with processes

March in I with Temporal Tiling

Decompose J with threads

WJ7 WJ13 WJ27 UpwindWeno3Burgers

1

2

3

4

5

S
p
e
e
d
u
p

Speedup over Non-tiling on Broadwell

Space

Pluto (Diamond)

Hybrid

Reduce the size of J-K
planes per process

Apply prefetching and
SIMD to K

Reuse J-K planes

The performance is evaluated across 6 numerical schemes and
compared to space tiling and Pluto (diamond tiling):

WJ7: 7pt weighted Jacobi for �

WJ13: 13pt weighted Jacobi for �

WJ27: 27pt weighted Jacobi for �

Upwind: 2nd order upwind for �

Weno3: 3rd order WENO for �

Burgers: CD for �

∇2p = b
∇2p = b
∇2p = b

∂tϕ + ⃗u ⋅ ∇ϕ = 0
∂tϕ + ⃗u ⋅ ∇ϕ = 0

∂t ⃗u + ∇ ⋅ (⃗u ⃗u) = ∇2 ⃗u

‣ Divide the domain into chunks and pipeline the chunks’ execution

(Pluto was unable to tile Burgers equation.)

Cl�1

Cl

Cl+1

P0

Cl�1

Cl

Cl+1

P1

Stage l

Cl�1

Cl

Cl+1

P0

Cl�1

Cl

Cl+1

P1

Stage l + 1

Pipline Communication and Computation

Ground Truth Prediction, RMAE ~6%Ground Truth Prediction, RMAE ~4%

‣ Train the network to solve � with data and physics∇2p = 0

�loss =
1
N

(∑ (p − p*)2 + α∑ (∇2p)2)
Multigrid + Finite Difference

Lid-Driven Cavity Channel Flow

Backward facing step

‣ Learn simple flow features

‣ Predict for a more complex flow
Transfer

• Next Steps: Simple Flow Features � Complex Flows→

Tr
ai

ni
ng

Geometries:

‣ Flat Plate

‣ Channel

‣ Cavity …
Local Solutions:

‣ Boundary Layer

‣ Vortex

‣ Wave …

Predictor

for Simple

Features

N
et

Deep Learning

Test

Unseen Geometries:

‣ Backward

 facing step

‣ Airfoil …

Transfer

‣ Complex flows are composed by simple flow features

