rsc20

Everywhere | more
we dre |than hpc.

Algorithm Design for High Performance
CFD Solvers on Structured Grids
[11/19] * [SC20]




Algorithm Design for High Performance CFD Solvers on Structured Grids

Hengjie Wang, Aparna Chandramowlishwaran

HPC Forge
University of California, Irvine




Outline

Motivation and Background

Grid Partitioner

Pencil: Pipelined Distributed Stencil Computation

Deep Learning + CFD

« Summary



Motivation

 Computational Fluid Dynamics (CFD)

%0 : i —-m-=-=- Experiment
———— Prediction (Fine)

30
20k [ Experiment
e Pr@diction (Fine)
10~
o i A
10 10° R
St



Motivation

NASA CFD Vision 2030 Study

CFD Vision 2030 Study

A Path to Revolutionary Computational
Aerosciences

2. HPC hardware is progressing rapidly and technolo-
gies that will prevail are difficult to predict. However,

5. Revolutionary algorithmic improvements will be re-
quired to enable future advances in simulation capa-

bility. Traditionally, developments in improved discreti-
. 1 i~ | h | 4 1 M 1 _:h- _— :




Computational Fluid Dynamics

* Discretize space with a grid

* Solve governing equations on the grid

ALY
- -
=
- -

I — ——

e —

1

I

t 51

Space discretized by a gird Variables (velocity, pressure) on the grid

- -




Structured Grids

Regular connectivity between grid cells

Identical mapping between the grid’s data and the memory layout

Organized into rectangular blocks

[,j+1

i+1,]

i,j-1

Regular Connectivity

Single Block Grid

Backward Facing Step
Multi-Block Grid




Multi-Block Structured Grids

e Structured grids for realistic engineering applications consist of 102~103 blocks

= Rocket model created with SpaceX’s released geometric specifics

I!!ii"::::i!“!!!ﬂliill

Multi-Block Grid, 769 blocks

Block Distribution

©) ©)
()O

&)

Q

Block Size (10° Grid Cells)

1

2

3




Stencils

* The most common computational pattern in CFD using structured girds
= Characterized by a regular shape

= Different shapes and radius (r)

] ) ] [
] ] O|O|O ) o] [ []
][] ] [ ] [ C|m| ) ] o] [1E[]
] ] | [l [ T ] []

] ) o] [

Star,r=1 Star, r=2 Box,r=1 Box, r=2 Staggered, r=1



Stencil Computation

Typically memory-bound
= Flops, memory accesses ~ grid size

Significant data reuse

- —> Cache Tiling

= Solve 2D Poisson equation V?p = 0 with finite difference

n
Pi+1,j
n ntl|pn
| pl,]—l pl,] pl,_]+1
‘ n
Pi+1,j
J

2D 5-Point Stencil

<+<— Reuse

10



Distributed Stencil Computation

* Blocks are partitioned to sub-blocks and distributed across processes

* Processes communicate to exchange halo layers

Halo Exchange
Inter-Node Communication

Process O Process 1

11



Distributed Stencil Computation

* General Algorithm:

Optimizations:

Minimize the communication cost

Grid Partition

\ 4

N

while maintaining load balance

v

Stencil Computation

\ 4

Pack Halo to Buffer

\ 4

Spatial and Temporal Cache Tiling

Replace the iterative numerical

Halo Exchange

A 4

A

€« — —

Unpack Halo from Buffer

>

S L

SHEIASH WHRALARMRSEW Sk putation

---- Optimize memory access

12



Outline

Motivation and Background

Grid Partitioner

= Introduction = Experiments and Results

= Algorithms = Summary

Pencil: Pipelined Distributed Stencil Computation

Deep Learning + CFD

« Summary

13



Assumptions and Basic Concepts

Hybrid Programming Model:

" One MPI process per node and spawn one thread per core

"  Conform to modern architecture

= Assume shared memory copy takes no time

Partition 4 blocks across 2 nodes:

I
I
ﬂ() Bvtas
50 |
I
S I
I
50 Bytes
¥ :
40 Bytes

50

50 Bytes

Average Workload W
Imbalance

Edge Cuts
Communication Volume

Shared Memory Copy

105
5/105

2

80 Bytes
100 Bytes

14



Assumptions and Basic Concepts

* Given the number of partitions n,, the partitioner should:

= Achieve load balance

" Minimize the inter-node communication

15



State-of-the-art

 Top-down:
= Cut large blocks and assign sub-blocks to partitions
=  Group Small blocks to fill partitions
Examples: Greedy, Recursive Edge Bisection, Integer Factorization
* Bottom-Up:
= Transform the problem into graph partitioning via over-decomposition
= Apply a graph partitioner

Examples: Metis, Scotch, Chaco

16



Limitations of the State-of-the-art

* The algorithm does account for shared memory copy
e Use partitions with flat MPI
The performance mixes shared memory copy and inter-node communication
* Primarily focus on reducing communication volume, ignore the effect of network’s

latency

18



Contributions

* New cost function, unifying the communication volume, edge cuts, and
network specifics (bandwidth and latency)

* Novel partition algorithms
= Modify Recursive Edge Bisection (REB) and Integer Factorization (IF) for cutting
large blocks
"  Propose Cut-Combine-Greedy (CCG) and Graph-Grow-Sweep (GGS) for grouping

small blocks

19



Outline

Motivation and Background

Grid Partitioner

= Introduction = Experiments and Results

= Algorithms = Summary

Pencil: Pipelined Distributed Stencil Computation

Deep Learning + CFD

« Summary

20



Cost Function

 a-—f model: a latency (s), B bandwidth (Bytes/s), S message size (Bytes) :

S
tmsg:a_I__

B

* Sum over all the inter-node messages:

C ication Vol
Z tmsg . Z Edge Cuts 4 ommumcaﬁlon olume

21



Cutting Large Blocks

Recursive Edge Bisection (REB) [Berger 1987]

Recursively choose the cut that introduces minimum communication cost

2

4

2 7

3

4/3
8/3
4/3

4/3

22



Cutting Large Blocks

* Integer Factorization (IF)

Ny — NG - Ny - Ng, ‘ ~ ~ —

"= Choose the {ni, n;, nk} that leads to the minimum communication cost

= Ifn, is prime, then cut off one partition and factorize the rest

7 7

li:7,lj:4,np:6 li=7,lj=4,np=7

23



REB vs IF

* REB
v/ Reduces communication volume
X Introduces new edge cuts
 |F
v/ Aligns block boundaries and avoids new edge cuts

X May not be as good as REB in reducing communication volume

24



Grouping Small Blocks

Cut-Combine-Greedy (CCG): cut and combine small blocks in a greedy fashion
* Include (part of) the block that reduces max communication cost into the partition

* Convert inter-node communication to shared memory copy

4
—{ A: 40 — A: 40 Co:40
4 2
6 6
— B: 80 D: 40 — B: 80 D: 40
4 4

W =160, W = 40 W =160, W =120 W =160, W =160

25



¥ sc20

Grouping Small Blocks

Graph-Growing-Sweep (GGS): repeatedly use graph-growing to group small blocks
* Avoid cutting blocks

* Convert inter-node communication to shared memory copy

W =120, W, = 40, W, = 0 W =120, W, = 120, W, = 80 W = 120, W, = 80, W, = 120

26



CCG vs GGS

* CCG
v/ Converts more inter-node communication to shared memory copy
X Creates more edge cuts and introduces new messages

* GGS
v/ Converts less communication to shared memory copy

X Avoids cutting blocks and introduces less new messages

27



Outline

Motivation and Background

Grid Partitioner

= |ntroduction = Experiments and Results

= Algorithms = Summary

Pencil: Pipelined Distributed Stencil Computation

Deep Learning + CFD

« Summary

28



Test Setup

e Evaluated with a MPIl + OpenMP based Jacobi Solver
 Compare to Greedy and Metis + Over-Decomposition

* Mira Supercomputer: IBM BlueGene/Q nodes, 16 cores per node

* Network latency @ = 1.73x107° s and bandwidth § = 1.77x10° bytes/s

10~2 | —— Measured Time :
o «a — [ model

—6 | | | | | | |
10 102 10% 10* 10° 105 107 10°
Message Size (Bytes)




Bump 3D

* Bump3D: 5 blocks and 8.3x107 cells in total

 Beyond 512 partitions, estimate cost: Greedy > Metis > REB > |F

Communicaiton Cost
I I

I

°
1.0 u_

°
[ ] ® ] *
Q [ ] = -)I(-

# e Greedy

011 ° % : m Metis |
n +REB
=< [F

* | | |

64 256 1024 4096

# partitions

30



Bump 3D

Greedy

Metis
REB+CCG

Communication

1024

Bump 3D Running Time

REB+GGS

IF+GGs

m Computation

Greedy

Metis
REB+CCG

2048

N
IF+ccc
O

REB+GGS

IF+GGS

Others

Greedy

Metis
REB+CCG

IF+CCG

REB+GGS

N
o
O
o))

IF+GGS

Consistent with cost model

At 4096 nodes, IF outperforms
Greedy by 5.80x and Metis
2.56x in communication

Latency has more effect

31



Rocket Model

lI III-III_IiI E.
-III_II 5
I-IIII-IIII-IImI-

Rocket model created with SpaceX’s
released geometry specifics, 769 blocks

Block Distribution

o o
(')O(')\ o O | |

0 1 2 3

Block Size (10% Grid Cells)

32



Rocket Model

* Metis performs the worst for 1024-4096 partitions for its large cut edges

* Greedy achieves similar performance compared to REB + CCG and IF + GGS

Communication Volume
I I I I

1.0
. &
an "
g g
(]
5% x %
= [ |
S
> + e Greedy
0.1 - m Metis |
+CCG
x GGS
64 256 1024 4096

# Partition

Cuts

10°

103

p(

Edge Cuts

e Greedy
m Metis
+CCG
x GGS

l l
256 1024
# Partition

|
4096

Communication Cost
I I I

I
2 - .
[ |
/N 1 i u §l7
Z 2
[ |
3 ®
3 o ° ®
< x x % e Greedy
+ m Metis
Olf+ = +CCG |
- x GGS
| | | |
64 256 1024 4096

# Partition

33



Rocket Model

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Time(s)

" Communication

%)
=

(<}
p=

>
o
v
)
—
O

Rocket Model Running Time

IF+CCG
REB+GGS

O
)
)
+
o0
L
('

1024

IF+GGS

m Computation

%)
-
(<2}
=

Others

%)
=
(<3}
=

Metis shows good performance
at 4096 partitions.

Greedy shows good performance
at 1024, 2048 partitions.

At 4096 nodes, IF outperforms
Greedy by 2.11x and Metis
1.54x in communication

34



Summary

* Use a — f model to define a new cost function, unifying the communication volume,

edge cuts and network latency and bandwidth

* Propose modified REB, IF for cutting large blocks and novel algorithms CCG, GGS for

grouping small blocks

* Evaluated with an MPI + OpenMP based Jacobi solver on up to 4096 nodes, our

partitioner achieves significant speed up in communication:
= 5.80x over Greedy, 2.57x over Metis on Bump 3D

= 2.11x over Greedy, 1.54x over Metis on Rocket Model

35



Outline

Motivation and Background

Grid Partitioner

Pencil: Pipelined Distributed Stencils
= Introduction = Tests and Results

= Algorithm = Summary

Deep Learning + CFD

« Summary

36



Distributed Stencil Computation

General Algorithm:

Grid Partition

\ 4

v

Optimizations:

Stencil Computation

\ 4

Pack Halo to Buffer

\ 4

Halo Exchange

A 4

— Spatial and Temporal Cache Tiling

«—— QOverlap communication and computation

Unpack Halo from Buffer

>

37



Limitations of the State-of-the-art and Challenges

 Most temporal tiling methods are designed for shared memory systems

= Find the optimal combination of MPI, OpenMP and temporal tiling

 Temporal tiling is not directly applicable to multi-block grids

* Most temporal tiling methods are designed for a single block

38



Temporal Tiling is not Directly Applicable to Multi-Block Grids

 Temporal tiling works for perfectly nested loop — single block

Single Block

// time loop
for (int t=1; t<NT; ++t)
// space loops
for (int 1=0; 1<NI; ++1)
for (int J=0; j<NJ; ++73)
for (int k=0; k<NK; ++k)
compute_stencil(i, j, k);

® |ntroduces data dependencies
between blocks per time iteration
= Prevents tiling the time loop

Multi-Block

for (int t=1; t<NT; ++t) {
for (int block=0; block<NB; ++block) {
get_block_size(block, sizes);
for (int 1=0; 1<sizes[0@]; ++1)
for (int j=0; j<sizes[1l]; ++3)
for (int k=0; k<sizes[Z2]; ++k)
compute_stencil(i, j, k);

:

for (int block=0; block<NB; ++block)
exchange_boundary(block, nHalo);

39



Limitations of the State-of-the-art and Challenges

 Most temporal tiling methods are designed for shared memory systems

" Find the optimal combination of MPI, Threads(OpenMP) and temporal tiling

 Temporal tiling is not directly applicable to multi-block grids

* Most temporal tiling methods are designed for a single block

* How to hide the communication cost efficiently with temporal tiling?
= Non-blocking communication does not necessarily overlap

= Data dependency

40



Overlap Communication and Computation

* Non-Blocking communication

=  Communication does not necessarily proceed outside MPI routines

MPI_Isend(...);
MPI_Irecv(...); ___
compute_stencil();

MPI_Waitall(); —

Most of the communication ends
up serialized with computation

 Data dependency between stencil computation and halo

Halo

split — Halo-dependent
Halo Domain —

Halo-independent



Contributions

* Pencil: A Pipelined Algorithm for Distributed Stencil Computation
= Find an optimal combination of MPI, OpenMP, and temporal tiling
= Extend temporal tiling to multi-block grids

= Pipeline computation and communication to achieve overlap

42



Outline

Motivation and Background

Grid Partitioner

Pencil: Pipelined Distributed Stencils
= |ntroduction = Experiment and Results

= Algorithms = Summary

Deep Learning + CFD

« Summary

43



Flat MPI vs OpenMP — Memory Arrangement

* Solve V4p = b on a block of size N3 on 8 cores

= 3D 7-point Stencil ® ® 3D 7-point
= Streaming access: K—J— |

= Without cache tiling, OpenMP is more likely to spill the cache

Each process allocates (N /2)3 cells One process allocates N3 cells

N F

Flat MPI 2 X 2 X 2 OpenMP8 X1 X1

Flat MPI J-K plane
area (N/2)?

OpenMP J-K plane
area N2

44



Spatial Tiling

 Keep K unsplit for SIMD and pre-fetching

e Split J to reduce J-K plane area

TileO —» Tilel — Tile2

Each J-K plane is read and written
once per iteration
LLC can hold multiple planes

Fuse iterations = Temporal Tiling

45



Temporal Tiling

e Fuse iterations in time

/ 15t Iteration
/’K
- B 2 Iteration Time-Space Tile
J : ; .
3rd |teration Fuse 3 iterations on [jq, j,]
T 1
' EEEEEENE
| Assume 5 J-K planes
fitin cache _ ; >
Halo — | | ] ] L —J1 Jav 1 J

Dependent data from adjacent ranges
o, j1) and (jz2, j3]

J1 J2
Space Tile

46



Optimal Combination of MPI, OpenMP, and Temporal Tiling

e Hybrid MPI + OpenMP Tiling:

1. Decompose K with MPI processes
= Based on Cache and Domain sizes

v’ Results in small J-K planes and reduces required cache quota

2. Decompose J with OpenMP threads
v’ Streaming access in K for SIMD and pre-fetching

3. March in / with temporal tiling (and pipeline)

48



Temporal Tiling for Multi-Block Grids

 DeepHalo [Sawdey 1998, Ding 2001, Kjolstad 2010]

Multi-Block

for (int t=1; t<NT; ++t) {
for (int block=0; block<NB; ++block) {
get_block_size(block, sizes);
for (int 1=0; i<sizes[0]; ++1)
for (int j=0; j<sizes[1l]; ++3)
for (int k=0; k<sizes[2]; ++k)
compute_stencil(i, j, k);

h

// blocks' connections
for (int block=0; block<NB; ++block)

Multi-Block with DeepHalo

for (int t=1; t<NT; ++t) {
// fused iteration
for (int tt=0; tt<tFused; ++tt) {

\ 4

exchange_boundary(block, nHalo);

= Fuse time iterations for each block
= Fewer data transfers, larger volume per transfer

for (int block=0; block<NB; ++block) {
get_block_size(block, sizes);
for (int 1=0; i<sizes[0]; ++1)
for (int j=0; j<sizes[1l]; ++3)
for (int k=0; k<sizes[2]; ++k)
compute_stencil(i, j, k);

¥
¥
// blocks' connections
for (int block=0; block<NB; ++block)
—> exchange_boundary(block, |tFused*nHalo);

}

49



Overlap Communication and Computation

Enforce the concurrency of computation and communication

Dedicated Core (DC)

i1f (thread == 0) {
MPI_Isend(...);
MPI_Irecv(...);

MPI_Waitall(Q);
} else {

compute_stencil();
X No overlap }

Naive Implementation

MPI_Isend(...);
MPI_Irecv(...);
compute_stencil();
MPI_Waitall(Q);

v/ Robust

X Use 1 less core for computation

Repeated Poll (RP)

MPI_Isend(...);
MPI_Irecv(...);
for (int 1=0; 1<NI; ++1) {
for (int j=0; j<NJ; ++3)
for (int k=0; k<NK; ++k)
compute_stencil(i, j, k);
MPI_Test();
ks
MPI_Waitall(Q);

V' Use all cores for computation

X Network-specific Behavior

50



State-of-the-Art for Overlapping Computation and Communication

* Split domain to resolve data dependency

* Divide tiles based on halo dependency

Halo-Dependent —

Halo
Halo-Dependent Halo-Independent

y

Halo-Independent y |

NN T

\

X Load imbalance for threads / \ / \ /

\

X Inefficient halo-dependent

computation X Incompatible with domain decomposition

for multi-block grids



Pipelining Communication and Computation

* Byl dlakshraherkitdantionddmoedi didimgrsion dimension

 Domain decomposition can happen in any dimension

Chunk updated
Halo exchange

chunk
m+1

chunk
m-1

Process O

chunk
m+1

chunk
m-1

Stage m

Process 1

Chunk | chunk | [ionisi | chunk | pfChunk updated
chunk r m hange m Halo Exchange
chunk chunk
m-1 m-1
Process O Process 1
Stage m+1

52



Outline

Motivation and Background

Grid Partitioner

Pencil: Pipelined Distributed Stencils
= |ntroduction = Experiments and Results

= Algorithms = Summary

Deep Learning + CFD

« Summary

53



Test Platforms

* Pencil is evaluated on two platforms

Bebop (Argonne) HPC3 (UCI)
Architecture Intel Broadwell Intel Gold
(Xeon E5-2695v4) (Xeon 6248)
Sockets 2 2
Cores/Socket 18 20
GFlops/s (DP) 1200 2207
L2 Cache 32 KB 1024 KB
L3 Cache 90 MB 55 MB
Bandwidth 120.3GB/s 194.4GB/s
Network Omni-Path InfiniBand
Compiler Inter 2017 GCC8.4.0

54



Test Cases

* Pencil is evaluated with six schemes on four stencils

Equation Schemes Shape Radius Al #In  #Out
WIJ 7pt Star 1 0.31 2 1
Vip=b WJ 13pt Star 2 05 2 1
WIJ 27pt Box 1 0.94 2 1
. Upwind Star 2 0.71 4 1
WENO3 Star 2 1.64 4 1
0 U+ V-@@u) =vAu  Burgers-CD Staggered 1 1.67 3 3

WJ: Weighted Jacobi; CD: Central Difference

55



Single Node Performance

e Dprimt2%ect@03patiel GifiagPduiidroaten Bhet tilfog asrthedasetiemes
e Tomparal wilthgspadiald heg\vRlutiddiagadmst siiagal Biting rather thak baselimeigula 2014]

Speedup over Baseline on Gold Speedup over Baseline on Broadwell
5 5
4 4
3 3

2 2
ool Y Eef uff mm n 1I||I|I

WlJ7 WJ13 Upwind WJ27 WENO3 Burgers WlJ7 WJ13 Upwind WIJ27 WENO3 Burgers
m Spatial Tiling Pluto Hybrid tiling W Spatial Tiling Pluto Hybrid tiling

56



Test Setup for Pipelining Communication and Computation

* Pencil is evaluated on 32 nodes connected by InfiniBand (HPC3) or Omni-Path (Bebop)
* DeepHalo + Hybrid Tiling
* Load balance for computation and communication:

= One block of size 480° per node

= Periodic boundary conditions for all blocks

57



Pipelining Communication and Computation

* DeepHalo reduces communication time

32 Intel Gold Nodes, InfiniBand Connection
Sp: Spatial Tiling; Hy: Hybrid Tiling; DC: Dedicated Core; RP: Repeated Poll
2

1
' Buee Himn |I|| . |||| ||||

Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP

Hybrid /Spatial 1.18~2.98x
Overlap / Hybrid 1.08~1.20x

Time(s)

WJ7 WIJ13 Upwind W27 WENQO3 Burgers

m Computation = Communication Packing+Unpacking
58



Pipelining Communication and Computation

* DeedHplsiznéfienttbningenovesigetionrsamebawhlers ibeiiommunication is slow

32 Intel Broadwell Nodes, Omni-Path Connection
Sp: Spatial Tiling; Hy: Hybrid Tiling; DC: Dedicated Core; RP: Repeated Poll

5
1 Hybrid /Spatial 1.11~1.82x
> Overlap / Hybrid 1.20~1.48x
‘cé')’ 3
= 2
- i i um N
. T ] ]
Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP Sp Hy DCRP
WIJ7 WiJ13 Upwind W27 WENOQO3 Burgers

m Computation Communication Packing+Unpacking

59



Scalability Test on Bebop 16 ~ 128 nodes

«  Weak Scalability: 4803 per node, periodic boundary conditions
e Strong Scalability: 1440 X 1440 X 960 cells in total, periodic boundary conditions

* Overlap improves the strong scalability by hiding the communication cost

Weak Scaling Strong Scaling Strong Scaling, Burgers
—%— WI7T —— WJI3 —x— WJ27 —— WIJT —— WJI3 —x— WJ27 —a—  Pencil
—o— Upwind —8— WENO3 —— Burgers —o— Upwind —5— WENO3 —— Burgers —a— non-overlap

—0— tcomm

6.4 | 6.4 1

1.6 |

Tlee(s)
Bl
+ 0
- u

C)Time(s)

Time(s)

0.4 { | | | 0.1

128 16 39 64 128

—_
(@)
w |
[\
(@)
T~

16 32 64 128

60



Multi-Block Grid Test

* Pencil is evaluated with a 6-block grid on 32 Broadwell nodes

 1.33~3.41x over MPI + OpenMP with spatial tiling

Pencil over Spatial Tiling

K

J WJ13 Upwind WJ27 WENO3Burgers
3.5x10? cells in total

Speed up
N w

61



Summary

Find the optimal combination of MPI, OpenMP and temporal tiling
* Decompose K with MPI processes

* Decompose J with OpenMP threads

* Marchin | with temporal tiling and pipelining

* Evaluated by 6 schemes on 4 stencils, up to 1.9x over Pluto for complex schemes

Apply temporal tiling to multi-block grids via DeepHalo

* DeepHalo’s effect on communication cost is network-specific.

Pipeline communication and computation to achieve overlap
* 1.3~3.4x over spatial tiling with flat MPI and MPI + OpenMP

* Improve strong scalability by hiding the communication cost

62



Outline

Motivation and Background

Grid Partitioner

Pencil: Pipelined Distributed Stencils

Deep Learning + CFD

In collaboration with Prof. Ramin Bostanabad at UCI

 Summary

63



Introduction

e Neural Networks vs Conventional CFD methods

9

0t fQ WdQ + ﬁaQ(FC _Fv)dS = fQ Qd«

Finite Volume, Finite Difference]

Boundary condition J » Flow Solution

Initial condition LRunge-Kutta, Multigird, ...
\

J

Y
Hours ~ Days

<« Hour
A

Neural Networks
FF, CNN, RNN, ...

A

Flow Snapshots { J > Flow Solution

Training Hours ~ Days

64



Advantages and Disadvantages of Using Neural Networks

* Neural Networks vs Conventional CFD methods
v Improve performance when the networks are being re-used

X Problem-Specific, i.e., unable to predict flows unseen in training

— Generalize the network to geometries unseen in training

Network?‘

»

Channel Flow Backward Facing Step

65



Preliminary Results

* Solve a 2D Homogeneous Poisson Equation Vp = 0

* Train the network:
= Finite Difference + Multigrid = sample solutions p*

= Regularizing the PDE error in loss function:

loss = %(Z(p —p*)*+ ocZ(Vzp)2 )

66



Preliminary Results

* Predict for domains of different shapes

Geometries in Training Geometries Unseen in Training
Ground Truth Prediction Ground Truth Prediction

Relative MAE ~4% Relative MAE ~6%

67



Next Steps Towards Solving Naiver-Stokes Equation

* Train networks with simple cases and predict for more complex flows

+-

Lid-Driven Cavity Channel Flow

_

Backward Facing Step

68



Outline

Motivation and Background

Grid Partitioner

Pencil: Pipelined Distributed Stencils

Deep Learning + CFD

 Summary

69



Summary

e Structured Gird Partitioner (/CS 19)
=  New cost function unifying algorithm factors and networks specifics

= Novel partition algorithms

e Pencil: A Pipelined Algorithm for Distributed Stencils (SC20)
= |dentify the optimal combination of MPIl, OpenMP, and Temporal tiling
= Applicable to Multi-Block grid

= Pipeline communication and computation to achieve overlap

* Deep Learning + CFD (ongoing)

= Generalize the network to geometries unseen in training

70



