
Algorithm Design for High Performance
CFD Solvers on Structured Grids
[11/19] • [SC20]

Algorithm Design for High Performance CFD Solvers on Structured Grids

Hengjie Wang, Aparna Chandramowlishwaran

HPC Forge
University of California, Irvine

2

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencil Computation

• Deep Learning + CFD

• Summary

3

Motivation

• Computational Fluid Dynamics (CFD)

4

Application Drivers
(Context : HiPER)

Motivation

5

• NASA CFD Vision 2030 Study

Computational Fluid Dynamics

• Discretize space with a grid

• Solve governing equations on the grid

Space discretized by a gird Variables (velocity, pressure) on the grid
6

Structured Grids

• Regular connectivity between grid cells

• Identical mapping between the grid’s data and the memory layout

• Organized into rectangular blocks

𝑖, 𝑗+1

𝑖-1, 𝑗 𝑖, 𝑗 𝑖+1, 𝑗

𝑖, 𝑗-1

Regular Connectivity Backward Facing Step
Multi-Block Grid

Single Block Grid

7

Multi-Block Structured Grids

• Structured grids for realistic engineering applications consist of 10&~10(blocks

§ Rocket model created with SpaceX’s released geometric specifics

Multi-Block Grid, 769 blocks

8

Stencils

• The most common computational pattern in CFD using structured girds

§ Characterized by a regular shape

§ Different shapes and radius (r)

9

Box, r = 1Star, r = 1 Star, r = 2 Box, r = 2 Staggered, r = 1

Stencil Computation

• Typically memory-bound

§ Flops, memory accesses ~ grid size

• Significant data reuse

§ Solve 2D Poisson equation ∇&𝑝 = 0 with finite difference

I

J

10

𝑝,-.,/0

𝑝,,/1.0 𝑝,,/0-. 𝑝,,/-.0

𝑝,-.,/0

2D 5-Point Stencil

Reuse

Cache Tiling

Distributed Stencil Computation

• Blocks are partitioned to sub-blocks and distributed across processes

• Processes communicate to exchange halo layers

Process 0 Process 1

11

Halo Exchange
Inter-Node Communication

Grid Partition

Distributed Stencil Computation

• General Algorithm:

Stencil Computation

Pack Halo to Buffer

Halo Exchange

Unpack Halo from Buffer

STOP?
NO

Spatial and Temporal Cache Tiling

Overlap communication and computation

Optimizations:

Optimize memory access

Minimize the communication cost
while maintaining load balance

12

Replace the iterative numerical
schemes with a neural network

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencil Computation

• Deep Learning + CFD

• Summary

§ Introduction

§ Algorithms

§ Experiments and Results

§ Summary

13

Assumptions and Basic Concepts

• Hybrid Programming Model:
§ One MPI process per node and spawn one thread per core
§ Conform to modern architecture
§ Assume shared memory copy takes no time

• Partition 4 blocks across 2 nodes:

Average Workload 2𝑊 105

Imbalance 5/105

Edge Cuts 2

Communication Volume 80 Bytes

Shared Memory Copy 100 Bytes

14

50

6050

50

50 Bytes

40 Bytes

40 Bytes

50 Bytes

40 Bytes

40 Bytes

Assumptions and Basic Concepts

• Given the number of partitions 𝑛5, the partitioner should:

§ Achieve load balance

§ Minimize the inter-node communication

15

State-of-the-art

• Top-down:

§ Cut large blocks and assign sub-blocks to partitions

§ Group Small blocks to fill partitions

Examples: Greedy, Recursive Edge Bisection, Integer Factorization

• Bottom-Up:

§ Transform the problem into graph partitioning via over-decomposition

§ Apply a graph partitioner

Examples: Metis, Scotch, Chaco

16

Limitations of the State-of-the-art

• The algorithm does account for shared memory copy

• Use partitions with flat MPI

The performance mixes shared memory copy and inter-node communication

• Primarily focus on reducing communication volume, ignore the effect of network’s

latency

18

Contributions

• New cost function, unifying the communication volume, edge cuts, and

network specifics (bandwidth and latency)

• Novel partition algorithms

§ Modify Recursive Edge Bisection (REB) and Integer Factorization (IF) for cutting

large blocks

§ Propose Cut-Combine-Greedy (CCG) and Graph-Grow-Sweep (GGS) for grouping

small blocks

19

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencil Computation

• Deep Learning + CFD

• Summary

§ Introduction

§ Algorithms

§ Experiments and Results

§ Summary

20

Cost Function

• 𝛼 – 𝛽 model: 𝛼 latency (s), 𝛽 bandwidth (Bytes/s), 𝑆 message size (Bytes) :

• Sum over all the inter-node messages:

21

Cutting Large Blocks

• Recursive Edge Bisection (REB) [Berger 1987]

§ Recursively choose the cut that introduces minimum communication cost

4

74 32 2

4/3

2

2

4/3

4/3

22

8/3

𝑛5 = 7

Cutting Large Blocks

• Integer Factorization (IF)

 § Choose the 𝑛,, 𝑛/, 𝑛: that leads to the minimum communication cost

§ If 𝑛5 is prime, then cut off one partition and factorize the rest

𝑙, = 7, 𝑙/ = 4, 𝑛5 = 6 𝑙, = 7, 𝑙/ = 4, 𝑛5 = 7

23

4

7

4

7

REB vs IF

• REB

✓ Reduces communication volume

✗ Introduces new edge cuts

• IF

✓ Aligns block boundaries and avoids new edge cuts

✗ May not be as good as REB in reducing communication volume

24

Grouping Small Blocks

Cut-Combine-Greedy (CCG): cut and combine small blocks in a greedy fashion

• Include (part of) the block that reduces max communication cost into the partition

• Convert inter-node communication to shared memory copy

6

4

4

4

2𝑊 = 160, 𝑊 = 40

𝐶?:40

𝐶.:20

A: 40 C: 60

B: 80 D: 40

6

4

4

4

2𝑊 = 160, 𝑊 = 120

A: 40 C: 60

B: 80 D: 40

6

4

4

4

2𝑊 = 160, 𝑊 = 160

A: 40

B: 80 D: 40

2

25

Grouping Small Blocks

Graph-Growing-Sweep (GGS): repeatedly use graph-growing to group small blocks

• Avoid cutting blocks

• Convert inter-node communication to shared memory copy

4

4

5

6

2𝑊 = 120, 𝑊. = 40, 𝑊& = 0

E: 40 D: 40

B: 40 C: 40

3A: 40
4

4

5

6

E: 40 D: 40

B: 40 C: 40

3A: 40

2𝑊 = 120, 𝑊. = 120, 𝑊& = 80 2𝑊 = 120, 𝑊. = 80, 𝑊& = 120

4

4

5

6

E: 40 D: 40

B: 40 C: 40

3A: 40

26

CCG vs GGS

• CCG

✓ Converts more inter-node communication to shared memory copy

✗ Creates more edge cuts and introduces new messages

• GGS

✓ Converts less communication to shared memory copy

✗ Avoids cutting blocks and introduces less new messages

27

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencil Computation

• Deep Learning + CFD

• Summary

§ Introduction

§ Algorithms

§ Experiments and Results

§ Summary

28

Test Setup

101 102 103 104 105 106 107 108
10�6

10�5

10�4

10�3

10�2

Message Size (Bytes)

T
im

e
(s
)

Measured Time
↵� � model

29

• Evaluated with a MPI + OpenMP based Jacobi Solver

• Compare to Greedy and Metis + Over-Decomposition

• Mira Supercomputer: IBM BlueGene/Q nodes, 16 cores per node

• Network latency 𝛼 = 1.73×101E s and bandwidth 𝛽 = 1.77×10F bytes/s

Bump 3D

• Bump3D: 5 blocks and 8.3×10G cells in total

• Beyond 512 partitions, estimate cost: Greedy > Metis > REB > IF

64 256 1024 4096

0.1

1.0

partitions
C
os
t

Communicaiton Cost

Greedy
Metis
REB
IF

30

Bump 3D

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ee

dy
M

et
is

RE
B+

CC
G

IF
+C

CG
RE

B+
GG

S
IF

+G
G

S

Gr
ee

dy
M

et
is

RE
B+

CC
G

IF
+C

CG
RE

B+
GG

S
IF

+G
G

S

Gr
ee

dy
M

et
is

RE
B+

CC
G

IF
+C

CG
RE

B+
GG

S
IF

+G
G

S

1024 2048 4096

Ti
m

e(
s)

Bump 3D Running Time
Communication Computation Others

• Consistent with cost model

• Latency has more effect

• At 4096 nodes, IF outperforms
Greedy by 5.80x and Metis
2.56x in communication

31

Rocket Model

Rocket model created with SpaceX’s
released geometry specifics, 769 blocks

32

0 1 2 3
0

50

100

Block Size (106 Grid Cells)

#
B
lo
ck
s

Block Distribution

Rocket Model

• Metis performs the worst for 1024-4096 partitions for its large cut edges

• Greedy achieves similar performance compared to REB + CCG and IF + GGS

64 256 1024 4096

0.1

1.0

Partition

V
ol
u
m
e
(G

B
)

Communication Volume

Greedy
Metis
CCG
GGS

64 256 1024 4096

103

104

105

Partition

C
u
ts

Edge Cuts

Greedy
Metis
CCG
GGS

64 256 1024 4096

0.1

1

2

Partition

C
os
t
(s
)

Communication Cost

Greedy
Metis
CCG
GGS

33

Rocket Model

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Gr
ee

dy
M

et
is

RE
B+

CC
G

IF
+C

CG
RE

B+
GG

S
IF

+G
G

S

Gr
ee

dy
M

et
is

RE
B+

CC
G

IF
+C

CG
RE

B+
GG

S
IF

+G
G

S

Gr
ee

dy
M

et
is

RE
B+

CC
G

IF
+C

CG
RE

B+
GG

S
IF

+G
G

S

1024 2048 4096

Ti
m

e(
s)

Rocket Model Running Time
Communication Computation Others

• Greedy shows good performance
at 1024, 2048 partitions.

• Metis shows good performance
at 4096 partitions.

• At 4096 nodes, IF outperforms
Greedy by 2.11x and Metis
1.54x in communication

34

Summary

• Use 𝛼 – 𝛽 model to define a new cost function, unifying the communication volume,

edge cuts and network latency and bandwidth

• Propose modified REB, IF for cutting large blocks and novel algorithms CCG, GGS for

grouping small blocks

• Evaluated with an MPI + OpenMP based Jacobi solver on up to 4096 nodes, our

partitioner achieves significant speed up in communication:

§ 5.80x over Greedy, 2.57x over Metis on Bump 3D

§ 2.11x over Greedy, 1.54x over Metis on Rocket Model

35

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencils

• Deep Learning + CFD

• Summary

§ Introduction

§ Algorithm

§ Tests and Results

§ Summary

36

Grid Partition

Distributed Stencil Computation

• General Algorithm:

Stencil Computation

Pack Halo to Buffer

Halo Exchange

Unpack Halo from Buffer

STOP?
NO

Spatial and Temporal Cache Tiling

Overlap communication and computation

Optimizations:

Minimize the communication cost
while maintaining load balance

37

Limitations of the State-of-the-art and Challenges

• Most temporal tiling methods are designed for shared memory systems

§ Find the optimal combination of MPI, OpenMP and temporal tiling

• Temporal tiling is not directly applicable to multi-block grids

• Most temporal tiling methods are designed for a single block

38

Temporal Tiling is not Directly Applicable to Multi-Block Grids

• Temporal tiling works for perfectly nested loop – single block

// time loop
for (int t=1; t<NT; ++t)

// space loops
for (int i=0; i<NI; ++i)

for (int j=0; j<NJ; ++j)
for (int k=0; k<NK; ++k)

compute_stencil(i, j, k);

Single Block Multi-Block

for (int t=1; t<NT; ++t) {
for (int block=0; block<NB; ++block) {

get_block_size(block, sizes);
for (int i=0; i<sizes[0]; ++i)

for (int j=0; j<sizes[1]; ++j)
for (int k=0; k<sizes[2]; ++k)

compute_stencil(i, j, k);
}
for (int block=0; block<NB; ++block)

exchange_boundary(block, nHalo);
}

§ Introduces data dependencies
between blocks per time iteration

§ Prevents tiling the time loop

39

Limitations of the State-of-the-art and Challenges

• Most temporal tiling methods are designed for shared memory systems

§ Find the optimal combination of MPI, Threads(OpenMP) and temporal tiling

• Temporal tiling is not directly applicable to multi-block grids

• Most temporal tiling methods are designed for a single block

40

• How to hide the communication cost efficiently with temporal tiling?

§ Non-blocking communication does not necessarily overlap

§ Data dependency

Overlap Communication and Computation

• Non-Blocking communication

§ Communication does not necessarily proceed outside MPI routines

MPI_Isend(...);
MPI_Irecv(...);
compute_stencil();
MPI_Waitall();

Most of the communication ends
up serialized with computation

• Data dependency between stencil computation and halo

Domain
split

Halo

Halo

Halo-dependent

Halo-independent

41

Contributions

• Pencil: A Pipelined Algorithm for Distributed Stencil Computation

§ Find an optimal combination of MPI, OpenMP, and temporal tiling

§ Extend temporal tiling to multi-block grids

§ Pipeline computation and communication to achieve overlap

42

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencils

• Deep Learning + CFD

• Summary

§ Introduction

§ Algorithms

§ Experiment and Results

§ Summary

43

Flat MPI vs OpenMP – Memory Arrangement

• Solve ∇&𝑝 = 𝑏 on a block of size 𝑁(on 8 cores

§ 3D 7-point Stencil

§ Streaming access: K → J → I

Each process allocates 𝑁/2 (cells One process allocates 𝑁(cells

I

J K

44

Flat MPI 2 × 2 × 2 OpenMP 8 × 1 × 1

3D 7-point

Flat MPI J-K plane
area 𝑁/2 &

OpenMP J-K plane
area 𝑁&

§ Without cache tiling, OpenMP is more likely to spill the cache

Spatial Tiling

• Keep K unsplit for SIMD and pre-fetching

• Split J to reduce J-K plane area

I
K

J Tile 0 → Tile 1 → Tile 2

§ Each J-K plane is read and written

once per iteration

§ LLC can hold multiple planes

Fuse iterations → Temporal Tiling

45

Temporal Tiling

• Fuse iterations in time

I
K

J

Space Tile

Halo

1st Iteration

Assume 5 J-K planes
fit in cache

2nd Iteration

3rd Iteration

𝑗. 𝑗&

T

J𝑗. 𝑗&

Time-Space Tile
Fuse 3 iterations on [𝑗., 𝑗&]

Dependent data from adjacent ranges
[𝑗?, 𝑗.) and (𝑗&, 𝑗(]

46

Optimal Combination of MPI, OpenMP, and Temporal Tiling

• Hybrid MPI + OpenMP Tiling:

1. Decompose K with MPI processes

§ Based on Cache and Domain sizes

ü Results in small J-K planes and reduces required cache quota

2. Decompose J with OpenMP threads

ü Streaming access in K for SIMD and pre-fetching

3. March in I with temporal tiling (and pipeline)

48

Temporal Tiling for Multi-Block Grids

• DeepHalo [Sawdey 1998, Ding 2001, Kjolstad 2010]

Multi-Block

for (int t=1; t<NT; ++t) {
for (int block=0; block<NB; ++block) {
get_block_size(block, sizes);
for (int i=0; i<sizes[0]; ++i)
for (int j=0; j<sizes[1]; ++j)
for (int k=0; k<sizes[2]; ++k)
compute_stencil(i, j, k);

}
// blocks' connections
for (int block=0; block<NB; ++block)
exchange_boundary(block, nHalo);

}

for (int t=1; t<NT; ++t) {
// fused iteration
for (int tt=0; tt<tFused; ++tt) {
for (int block=0; block<NB; ++block) {
get_block_size(block, sizes);
for (int i=0; i<sizes[0]; ++i)
for (int j=0; j<sizes[1]; ++j)
for (int k=0; k<sizes[2]; ++k)
compute_stencil(i, j, k);

}
}
// blocks' connections
for (int block=0; block<NB; ++block)
exchange_boundary(block, tFused*nHalo);

}

Multi-Block with DeepHalo

§ Fuse time iterations for each block
§ Fewer data transfers, larger volume per transfer

49

Overlap Communication and Computation

• Enforce the concurrency of computation and communication

MPI_Isend(...);
MPI_Irecv(...);
compute_stencil();
MPI_Waitall();

Naive Implementation Dedicated Core (DC) Repeated Poll (RP)
if (thread == 0) {
MPI_Isend(...);
MPI_Irecv(...);
MPI_Waitall();

} else {
compute_stencil();

}

MPI_Isend(...);
MPI_Irecv(...);
for (int i=0; i<NI; ++i) {
for (int j=0; j<NJ; ++j)
for (int k=0; k<NK; ++k)
compute_stencil(i, j, k);

MPI_Test();
}
MPI_Waitall();

50

✓ Robust
✗ Use 1 less core for computation

✓ Use all cores for computation
✗ Network-specific Behavior

✗ No overlap

State-of-the-Art for Overlapping Computation and Communication

• Split domain to resolve data dependency

• Divide tiles based on halo dependency

Halo

Halo-Dependent

Halo-Independent

✗ Load imbalance for threads

✗ Inefficient halo-dependent

computation

T

J

Halo-Dependent

Halo-Independent

✗ Incompatible with domain decomposition

for multi-block grids

Pipelining Communication and Computation

52

• Split blocks into chunks along the I dimension

chunk
m-1

Process 1Process 0

chunk
m

chunk
m+1

chunk
m-1

chunk
m

chunk
m+1

I

chunk
m

chunk
m

Chunk m’s computation is independent of
chunk m-1’s halo exchange

chunk
m-1

chunk
m-1

Process 1Process 0

chunk
m+1

chunk
m+1

chunk
m

chunk
m

chunk
m-1

chunk
m-1

• Pipeline communication and computation in I dimension

Stage m

Chunk updated
Halo exchange

Computation

Stage m+1

Chunk updated
Halo Exchange

Computation

• Retain the benefit from temporal tiling

• Domain decomposition can happen in any dimension

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencils

• Deep Learning + CFD

• Summary

§ Introduction

§ Algorithms

§ Experiments and Results

§ Summary

53

• Pencil is evaluated on two platforms

Test Platforms

Bebop (Argonne) HPC3 (UCI)
Architecture Intel Broadwell

(Xeon E5-2695v4)
Intel Gold
(Xeon 6248)

Sockets
Cores/Socket
GFlops/s (DP)

2
18
1200

2
20
2207

L2 Cache
L3 Cache

Bandwidth

32 KB
90 MB
120.3GB/s

1024 KB
55 MB
194.4GB/s

Network Omni-Path InfiniBand
Compiler Inter 2017 GCC 8.4.0

54

Test Cases

Equation Schemes Shape Radius AI #In #Out

∇&𝑝 = 𝑏
WJ 7pt Star 1 0.31 2 1

WJ 13pt Star 2 0.5 2 1

WJ 27pt Box 1 0.94 2 1

𝜕M𝜙 + 𝑢 ⋅ ∇𝜙 = 0
Upwind Star 2 0.71 4 1

WENO3 Star 2 1.64 4 1

𝜕M𝑢 + ∇ ⋅ (𝑢 𝑢) = 𝜈Δ𝑢 Burgers-CD Staggered 1 1.67 3 3

WJ: Weighted Jacobi; CD: Central Difference

55

• Pencil is evaluated with six schemes on four stencils

• Domain size 480(, use OpenMP without cache tiling as the baseline

• Compare with spatial tiling, Pluto (diamond tiling) [Bondhugula 2008, Bondhugula 2014]

Single Node Performance

1

2

3

4

5

WJ7 WJ13 Upwind WJ27 WENO3 Burgers

Speedup over Baseline on Gold

Spatial Tiling Pluto Hybrid tiling

1

2

3

4

5

WJ7 WJ13 Upwind WJ27 WENO3 Burgers

Speedup over Baseline on Broadwell

Spatial Tiling Pluto Hybrid tiling
56

• Up to 3.29x over spatial tiling and 1.9x over Pluto for complex schemes

• Temporal tiling should be evaluated against spatial tiling rather than baseline

• Pencil is evaluated on 32 nodes connected by InfiniBand (HPC3) or Omni-Path (Bebop)

• DeepHalo + Hybrid Tiling

• Load balance for computation and communication:

§ One block of size 480(per node

§ Periodic boundary conditions for all blocks

Test Setup for Pipelining Communication and Computation

57

Pipelining Communication and Computation

0

1

2

3

4

Sp Hy DC RP Sp Hy DC RP Sp Hy DC RP Sp Hy DC RP Sp Hy DC RP Sp Hy DC RP

WJ7 WJ13 Upwind WJ27 WENO3 Burgers

Ti
m

e(
s)

32 Intel Gold Nodes, InfiniBand Connection
Sp: Spatial Tiling; Hy: Hybrid Tiling; DC: Dedicated Core; RP: Repeated Poll

Computation Communication Packing+Unpacking
58

Hybrid / Spatial 1.18~2.98x
Overlap / Hybrid 1.08~1.20x

• DeepHalo reduces communication time

Pipelining Communication and Computation

0
1
2
3
4
5

Sp HyDCRP Sp HyDCRP Sp HyDCRP Sp HyDCRP Sp HyDCRP Sp HyDCRP

WJ7 WJ13 Upwind WJ27 WENO3 Burgers

Ti
m

e(
s)

32 Intel Broadwell Nodes, Omni-Path Connection
Sp: Spatial Tiling; Hy: Hybrid Tiling; DC: Dedicated Core; RP: Repeated Poll

Computation Communication Packing+Unpacking

Hybrid / Spatial 1.11~1.82x
Overlap / Hybrid 1.20~1.48x

59

• DeepHalo’s effect on communication is network-specific• Overlap significantly improves performance when the communication is slow

• Weak Scalability: 480(per node, periodic boundary conditions

• Strong Scalability: 1440 × 1440 × 960 cells in total, periodic boundary conditions

Scalability Test on Bebop 16 ~ 128 nodes

16 32 64 128
0.4

0.8

1.6

3.2

T
im

e(
s)

Weak Scaling

WJ7 WJ13 WJ27

Upwind WENO3 Burgers

16 32 64 128

0.1

0.8

6.4

T
im

e(
s)

Strong Scaling

WJ7 WJ13 WJ27

Upwind WENO3 Burgers

16 32 64 128

0.4

1.6

6.4

T
im

e(
s)

Strong Scaling, Burgers

Pencil

non-overlap
tcomm

60

• Overlap improves the strong scalability by hiding the communication cost

• Pencil is evaluated with a 6-block grid on 32 Broadwell nodes

• 1.33~3.41x over MPI + OpenMP with spatial tiling

Multi-Block Grid Test

3.5×10F cells in total

1

2

3

4

WJ7 WJ13 Upwind WJ27 WENO3Burgers
Sp

ee
d

up

Pencil over Spatial Tiling

61

I

J K

Summary

Find the optimal combination of MPI, OpenMP and temporal tiling

• Decompose K with MPI processes

• Decompose J with OpenMP threads

• March in I with temporal tiling and pipelining

• Evaluated by 6 schemes on 4 stencils, up to 1.9x over Pluto for complex schemes

Apply temporal tiling to multi-block grids via DeepHalo

• DeepHalo’s effect on communication cost is network-specific.

Pipeline communication and computation to achieve overlap

• 1.3~3.4x over spatial tiling with flat MPI and MPI + OpenMP

• Improve strong scalability by hiding the communication cost

62

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencils

• Deep Learning + CFD
In collaboration with Prof. Ramin Bostanabad at UCI

63

• Summary

Introduction

• Neural Networks vs Conventional CFD methods

Boundary condition
Initial condition

Finite Volume, Finite Difference

Runge-Kutta, Multigird, …
Flow Solution

X
XY
∫[𝑊𝑑Ω + ∮X[𝐹 − 𝐹b 𝑑𝑆 = ∫[𝑄𝑑Ω

Hours ~ Days

Flow Snapshots Neural Networks

FF, CNN, RNN, …
Flow Solution

≪ Hour

Training Hours ~ Days
64

Advantages and Disadvantages of Using Neural Networks

• Neural Networks vs Conventional CFD methods

✓ Improve performance when the networks are being re-used

✗ Problem-Specific, i.e., unable to predict flows unseen in training

Channel Flow

Network?

Backward Facing Step

65

Generalize the network to geometries unseen in training

Preliminary Results

• Solve a 2D Homogeneous Poisson Equation ∇&𝑝 = 0

• Train the network:

§ Finite Difference + Multigrid → sample solutions 𝑝∗

§ Regularizing the PDE error in loss function:

𝑙𝑜𝑠𝑠 =
1
𝑁

h 𝑝 − 𝑝 ∗ & + 𝛼h ∇&𝑝 &

66

Preliminary Results

• Predict for domains of different shapes

Ground Truth

67

Ground Truth Prediction
Relative MAE ~4%

Prediction
Relative MAE ~6%

Geometries in Training Geometries Unseen in Training

Next Steps Towards Solving Naiver-Stokes Equation

Channel Flow

Backward Facing Step

Lid-Driven Cavity

+

68

• Train networks with simple cases and predict for more complex flows

Outline

• Motivation and Background

• Grid Partitioner

• Pencil: Pipelined Distributed Stencils

• Deep Learning + CFD

• Summary

69

Summary

• Structured Gird Partitioner (ICS 19)
§ New cost function unifying algorithm factors and networks specifics

§ Novel partition algorithms

• Pencil: A Pipelined Algorithm for Distributed Stencils (SC20)
§ Identify the optimal combination of MPI, OpenMP, and Temporal tiling

§ Applicable to Multi-Block grid

§ Pipeline communication and computation to achieve overlap

• Deep Learning + CFD (ongoing)
§ Generalize the network to geometries unseen in training

70

