SC20 Is Everywhere We Are

SC20 Virtual Platform
Enabling System Wide Shared Memory for Performance Improvement in PyCOMPSs Applications
Event Type
Registration Categories
TimeFriday, 13 November 20202:35pm - 2:55pm EDT
LocationTrack 8
DescriptionPython has been gaining some traction for years in the world of scientific applications. The high-level abstraction it provides, however, may not allow the developer to use the machines to their peak performance. To address this, multiple strategies, sometimes complementary, have been developed to enrich the software ecosystem either by relying on additional libraries dedicated to efficient computation (e.g., NumPy) or by providing a framework to better use HPC scale infrastructures (e.g., PyCOMPSs).

In this paper, we present a Python extension based on SharedArray that enables the support of system-provided shared memory and its integration into the PyCOMPSs programming model as an example of integration to a complex Python environment. We also evaluate the impact such a tool may have on performance in two types of distributed execution-flows, one for linear algebra with a blocked matrix multiplication application and the other in the context of data-clustering with a k-means application. We show that with very little modification of the original decorator (three lines of code to be modified) of the task-based application the gain in performance can rise above 40% for tasks relying heavily on data reuse on a distributed environment, especially when loading the data is prominent in the execution time.
Back To Top Button