SC20 Is Everywhere We Are

SC20 Virtual Platform
Task-Parallel In Situ Data Compression of Large-Scale Computational Fluid Dynamics Simulations
Event Type
Registration Categories
TimeThursday, 12 November 20204:45pm - 5:05pm EDT
LocationTrack 10
DescriptionPresent day computational fluid dynamics simulations generate extremely large amounts of data; most of this data is discarded because current storage systems are unable to keep pace. Data compression algorithms can be applied to this data to reduce the overall amount of storage while either exactly retaining the original dataset (lossless compression) or retaining an approximate representation of the original dataset (lossy compression). Interpolative decomposition (ID) is a type of lossy compression that factors the original data matrix as the product of two (smaller) matrices; one of these matrices consists of columns of the original data matrix, while the other is a coefficient matrix. The structure of ID algorithms makes them a natural fit for task-based parallelism. Our presented work will specifically focus on using the task-based Legion programming model to implement a single-pass ID algorithm (SPID) in several fluid dynamics applications. Performance studies, scalability and the accuracy of the compressed results will be discussed in detail during our presentation.
Back To Top Button