SC20 Is Everywhere We Are

SC20 Virtual Platform
Petascale XCT: 3D Image Reconstruction with Hierarchical Communications on Multi-GPU Nodes
Event Type
Paper
Tags
Accelerators, FPGA, and GPUs
Algorithms
Applications
Scalable Computing
Award Finalists
Best Paper Finalist
Best Student Paper Finalist
Registration Categories
TP
TimeTuesday, 17 November 20203pm - 3:30pm EST
LocationTrack 2
DescriptionX-ray computed tomography is a commonly used technique for noninvasive imaging at synchrotron facilities. Iterative tomographic reconstruction algorithms are often preferred for recovering high quality 3D volumetric images from 2D X-ray images; their use, however, has been limited to small/medium datasets due to their computational requirements. In this paper, we propose a high-performance iterative reconstruction system for terabyte(s)-scale 3D volumes. Our design involves three novel optimizations: (1) optimization of (back)projection operators by extending the 2D memory-centric approach to 3D; (2) inclusion of hierarchical communications by exploiting “fat-node” architecture with many GPUs; (3) utilization of mixed-precision types while preserving convergence rate and quality. We extensively evaluate the proposed optimizations and scaling on the Summit supercomputer. Our largest reconstruction is a mouse brain volume with 9K×11K×11K voxels, where the total reconstruction time is under three minutes using 24,576 GPUs, reaching 65 PFLOPS; 34% of Summit's peak performance.
Back To Top Button