SC20 Is Everywhere We Are

Virtual Event FAQ
Recurrent Neural Network Architecture Search for Geophysical Emulation
Event Type
Paper
Tags
Applications
Machine Learning, Deep Learning and Artificial Intelligence
Parallel Programming Languages, Libraries, and Models
Registration Categories
TP
TimeTuesday, 17 November 202010:30am - 11am EDT
LocationTrack 2
DescriptionDeveloping surrogate geophysical models from data is a key research topic in atmospheric and oceanic modeling because of the large computational costs associated with numerical simulation methods. Researchers have started applying a wide range of machine learning models, in particular neural networks, to geophysical data for forecasting without these constraints. Constructing neural networks, however, for forecasting such data is nontrivial and often requires trial and error. To that end, we focus on developing proper-orthogonal-decomposition-based long short-term memory networks (POD-LSTMs). We develop a scalable neural architecture search for generating stacked LSTMs to forecast temperature in the NOAA Optimum Interpolation Sea-Surface Temperature data set. Our approach identifies POD-LSTMs that are superior to manually designed variants and baseline time-series prediction methods. We also assess the scalability of different architecture search strategies on up to 512 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.
Back To Top Button