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Vision: The foundation for a socially responsible quantum internet which will spur
new technology industries and a competitive marketplace of quantum service providers 
and application developers for the benefit of all

Mission: Develop the first quantum network enabling fully error-corrected, high-speed 
and long-range quantum connectivity between multiple user groups enabled by quantum
repeaters, education pathways for a large and diverse workforce, and a roadmap for the 
just and equitable deployment of quantum internet technology and its transformative
applications
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Why a Quantum Internet?
• [fundamentally-powerful] computing

• [provably-secure] communications

• [high-resolution] sensing

• Quantum-enabled applications that we cannot imagine today
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Key Societal Impacts

• Data security and privacy that is “future proof”
– Promotes national security, personal finance, electronic medical records

• Pattern search and decision making on large distributed data
– Enables personalized medicine, self-driving cars, 

accurate weather and financial modeling

• Bringing the power of quantum computing to the masses
– Democratization of access
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Quantum Networks
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• Quantum Network that provides shared entanglement, and quantum 
information transfer to (many) users that is robust to noise, workload 
dynamics, eavesdroppers, and failures

• Quantum memories or registers are NICs for quantum networks
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• Two-party entanglement across a single point to point, loss limited 
connection

State of the Art
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• Quantum network design entirely different from classical counterpart
• Loss & noise kill quantum entanglement
• Single photons with no equivalent to an amplifier in quantum networks

Challenges
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• Two quantum network services:
– creation of entanglement
– transfer of quantum information

Quantum Network Services
Create entanglement

Vardoyan, Guha, Nain, Towsley Qcrypt’19

entangling 
measurement

entangled
state

entangled
state

entangled state

Transfer quantum 
information
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• Two quantum network services:
– creation of entanglement
– transfer of quantum information 

Challenges
– complexity, resource usage, performance
– key factor: how to overcome effects of noise

– quantum state purification & error correction

Quantum Network Services

Vardoyan, Guha, Nain, Towsley Qcrypt’19

Create entanglement

entangled state

Transfer quantum 
information
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p~1%
~1 Mqubit/sec* 

Boston

p~10-6

<100 qubits/hour

Quantum Repeater
The repeaterless bound: rate falls off 
exponentially with photon transmission 
probability p~e-kL

M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, 
E. N. Knall, H. Park, D. Englund, M. Lončar, D. D. Sukachev & M. D. Lukin
Nature volume 580, pages 60–64 (2020)
M. Takeoka, S. Guha & M. Wilde, Nature Communications 5 (2014) 11

Rate scales exponentially with distance
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Silicon-Vacancy (SiV): good emitter & long spin spin coherence time (~ 10 ms @ 100 mK)

Fiber coupled photonic crystal cavity in diamond: high co-operativity (C=4g2/κγ) spin-
photon interface, essential  for efficient repeater realization;

Using this platform, we demonstrated:
● Photon number router & single photon switch 

A. Sipahigil, et al, Science, 354, 847 (2016)

● Cavity mediated Interactions between spins
R. Evans, et al, Science, 362, 662 (2018)

● Quantum network node
C. Nguyen, et al, arXiv: 1907.13199 (to appear in PRL) (2019)

● Memory enhanced quantum communication
M. Bhaskar, et al, arXiv: 1909.01323 (in review in Nature)

Co-operativity
2016: C ~1
2017: C ~ 5

2018: C ~ 20
2019: C ~ 130

Lukin, Loncar & Englund collaboration 13

Diamond Color Center Based Memories
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Many Repeater Technologies

• Superconducting Qubits
• Trapped Ions
• Color Centers
• Neutral Atoms
• All-Photonic
• Others…
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Jungsang Kim, Duke, 
IonQ
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Extensible quantum networks require error mitigation

Error correction in today’s internet

quantum 
internet

Approaches to be explored for the 
NSF CQN:

● Entanglement purification 

● Quantum error correction 
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Basic Repeater Link Unit
• Single hop link, QM’s are essentially small quantum computers
• Need to maintain equal propagation times to interfere photons at 

Heralding node
• Need ns speed clocking across all nodes
• Single photon, polarization sensitive

– Many schemes require phase stability/locking

• Fidelity of entanglement depends on losses, memory life, qubits

16
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• Quantum memories and interface to photon
• Quantum measurements
• Quantum logic on qubits held in memories
• Multi-photon entanglement sources
• Classical computing and communications

Building a Quantum Network

U

1
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3
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Optical fiber
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Repeater Links
• Single links have low probabilities of success
• Multi-path or cluster states increase success rates
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QM QMH QM QMHH

QM QMH QM QMHH
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M. Pant, et. al. arXiv:1708.07142v2 2017
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Multiplexed Repeaters

• Create entanglement between Alice A1 and Bob Bn
• Generate two mode squeezed vacuum states at each node
• Attempt to entangle M states between neighboring nodes
• Use switches to create end to end channel during given clock cycle

– Nanosecond speeds

Seshadreesan et al., “A continuous-variable quantum repeater based on quantum scissors and 
mode multiplexing”, Phys. Rev. Research 2, 013310 , March 2020
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Quantum Repeater Control Planes

• ‘Link Layer’ manages 
and schedules creation 
of ebits

• ‘Physical Layer’ 
establishes 
entanglement

• Requires coordination 
between layers
– More of a cross-layer, 

SDN approach

20

All Classical 
Communication!

Dahlberg, et. al. ARXIV 1903.09778v1
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Quantum Network Layers
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Van Meter, et. al. ARXIV 0705.4128v2

Dahlberg, et. al. ARXIV 1903.09778v1
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Quantum-Classical Coexistence
• QKD integrated with classical network using SDN control

• WDM CV-QKD along with classical signals
• Used local QKD managers on each node
• Showed multiple network functions:

• Quantum secured data plane
• Quantum secured control plane
• Quantum secured network function virtualization

V. Martin et al., Center for Computational 
Simulation and ETSI Informáticos, Telefónica, 
Huawei, ICTON 2019
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Forms of Coexistence

• In-Channel: time multiplexed with classical signals
• In-Band: spectrally muxed in-band (1550 nm) with classical
• Out-of-Band: Separate bands, e.g. 1300nm quantum/1550 nm 

classical
• Separate fiber: quantum signals in separate fiber

– Might still share node optical switches and other resources

• Future quantum network coexisting in SCinet?

23
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Conclusions

• State of quantum networks similar to optical networks in 1980’s & 
early 1990’s
– Pre-SONET, no optical amplifiers, lab based optical devices

• Classical networks are to quantum networks what electronic data 
networks are to optical networks
– Woven into all aspects of quantum networks

– Control & coordinate physical hardware

– Manage and coordinate ‘higher layer’ operations 

– But, generally not carried over the quantum channels, parallel instead

• Still uncertain layering & control architecture
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WWW. CQN-ERC.ORG

INFO@CQN-ERC.ORG
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