FABRIC: Adaptive Programmable Research Infrastructure for Computer Science and Science Applications

Ilya Baldin, Inder Monga
SC20, XNET, November 13, 2020
FABRIC Leadership Team

<table>
<thead>
<tr>
<th>Ilya Baldin (RENCI)</th>
<th>Anita Nikolich (UIUC)</th>
<th>Inder Monga (ESnet)</th>
<th>Jim Griffioen (UKY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC Wang (Clemson)</td>
<td>Tom Lehman (Virnao)</td>
<td>Paul Ruth (RENCI)</td>
<td>Zongming Fei (UKY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why FABRIC?

- Change in economics of compute and storage allow for the possibility that future Internet is more stateful than we’ve come to believe
 - “If we had to build a router from scratch today it wouldn’t look like the routers we build today”
 - Explosion of capabilities in augmented computing - GPUs, FPGAs
 - Opportunity to reimagine network architecture as more stateful

- ML/AI revolution
 - Network as a ‘big-data’ instrument: real-time measurements + inferencing control loop
 - Network vendors have caught on to it:
 - “Self-driving network” - Juniper CTO Kireeti Kompella
 - Provisioning, cyber-security, other applications

- IoT + 5G - the new high-speed intelligent network edge

- New science applications
 - New distributed applications - data distribution, computing, storage

- A continuum of computing capabilities
 - Not just fixed points - “edge” or “public cloud”
 - Network as part of the computing substrate - computing, fusing, processing data on the fly
What is FABRIC?

FABRIC enables a completely new paradigm for distributed applications and Internet protocols and services:

- **A nation-wide programmable network testbed with significant compute and storage at each node**, allowing users to run computationally intensive programs and applications and protocols to maintain a lot of information in the network.
- Provides **GPUs, FPGAs, and network processors (NICs)** inside the network.
- Supports **quality of service (QoS)** using dedicated optical 100G links or dedicated capacity.
- **Interconnects national facilities:** HPC centers, cloud & wireless testbeds, commercial clouds, the Internet, and edge nodes at universities and labs.
- Allows you to design and test **applications, protocols and services** that run at any node in the network, not just the edge or cloud.
FABRIC Topology

100G Layer 1 between ESNet6 located nodes
100G Layer1 connections to R&E sites as possible
FABRIC for everyone

FABRIC Enables New Internet and Science Applications
- Stateful network architectures, distributed applications that directly program the network

FABRIC Advances Cybersecurity
- At-scale realistic research facilitated by peering with production networks

FABRIC Integrates HPC, Wireless, and IoT
- A diverse environment connecting PAWR testbeds, NSF Clouds, HPC centers and instruments

FABRIC Integrates Machine Learning & Artificial Intelligence
- Support for in-network GPU-accelerated data analysis and control

FABRIC helps train the next generation of computer science researchers
Key FABRIC features

- **Network as part of computing continuum**
 - ‘Everywhere-programmable’ using different abstractions (P4, OpenFlow, others)
 - Diverse compute, storage capabilities in places where routers typically reside today
 - Dedicated 100G optical links between many sites
 - Support new paradigms in network aware applications and protocols
 - Ability to peer with Internet

- **Network as a scientific instrument**
 - Pervasive measurement collection capabilities in- and outside the slice available to researchers
 - GPS-disciplined PTP clock sources at every site

- **Serve a broad range of scientific domains and applications**
 - Concerned with data transport for big-data science, cyber-security, terrestrial and 5G hybrid network architectures, federated ML/AI, Internet measurements and many more
FAB (FABRIC Across Borders): Global Expansion

- Japan (University of Tokyo)
- UK (University of Bristol)
- EU (University of Amsterdam)
- CERN

- New Use-cases & Partners
 - Astronomy/Cosmology (CMB-S4, LSST)
 - Weather (UMiami)
 - High-Energy Physics (CERN)
 - Urban Sensing/IoT/AI at Edge (UBristol)
 - Computer Science: 5G across borders, P4/SDN, Cybersecurity/Censorship Evasion
Example: Testing HEP data analysis approaches

- Real-time filtering & accelerated HEP data delivery
- Develop and test ML algorithms - inferencing within FABRIC nodes for real-time data processing
Conceptual FABRIC Node ‘Hank’ Overview

a.k.a. ‘A disaggregated router’
FABRIC Nodes

- Interpose compute and storage into the path of fast packet flows
- Rack of high-performance servers (Dell 7525) with:
 - 2x32-core AMD 7532 with 512G RAM
 - GPUs (RTX 6000 and T4), FPGA network/compute accelerators
 - Storage - experimenter provisionable 1TB NVMe drives in servers and a pool of ~250TB rotating storage at each site.
 - Network ports connect to a 100G+ switch, programmable through control software
- Reconfigurable Network Interface Cards
 - FPGAs (with P4 support)
 - Mellanox ConnectX-5 and ConnectX-6 with hardware off-load
 - Multiple interface speeds (25G, 100G, 200G+(future))
- Kernel Bypass/Hardware Offload
 - VM/Containers sized to support full-rate DPDK for access to Programmable NICs, FPGA, and GPU resources via PCI pass-through
FABRIC Node Design: Measurement Hardware

- GPS-disciplined clock source at most sites using PTP
 - Subject to constraints of the hosting site
- NICs capable of accurate packet sampling/timestamping
 - High touch/sampling story
- Programmable port mirroring
- Smart PDUs to measure power
- Optical layer measurements (where available)
- CPU, memory, disk, port/interface utilization and other time-series (software)
Construction Timeline

YEAR 1
- Plan, design & prototype
- Build a community

YEAR 2
- Deploy & launch
- Early experiments

YEAR 3
- Expand our reach

YEAR 4
- Advanced experiments
- Full operations

BEYOND

We are here. Join us now.
Where we are today

- Year 1 completed
- First 3 ‘dev’ sites are being integrated: RENCI, UKY, LBNL
- First production site (StarLight) being assembled by the integrator
- Software:
 - Control framework, network control plane, measurement framework, portal, system services all being implemented
- Expect to have early experimenters summer 2021
FABRIC Experiment building blocks

- Each experiment is encapsulated in a slice - a topology
- Slices consist of slivers
 - Individually programmable or configurable resources
- Slices can change over time
 - Grow or shrink, adding or shedding resources under programmatic control
- Slice topologies can be
 - Custom L2 using underlying MPLS-SR
 - Rely on persistent routable IPv6 layer in FABRIC
- Basic sliver classes
 - Nodes - can include a selection of PCI-passthrough devices
 - Links - L2 or L3 with QoS and without
 - Measurement points - inside and outside the slice
Bump-in-wire sliver

- Useful for collecting and analysing high-volume packet traces
 - Rely on NVMe drive for high-throughput local storage
 - Use GPU to assist in analysis
- Can optionally use a local GPS-disciplined PTP source to achieve millisecond-level accuracy for measurements
 - Multiple ‘bumps-in-wire’ in a slice can help create a snapshot of traffic across the network in a given instant in time
SmartNIC router sliver

- Can create a small-port-count OpenFlow router with hardware acceleration via Mellanox ConnectX-[5,6] cards
 - Direct access to PCI allows to bypass CPU in many cases.
FPGA or P4 router sliver

- Uses Xilinx FPGAs in a node
- Can build a small port-count FPGA router
- With additional tools support can also serve as a P4 router built on top of the FPGA
- Can route between multiple virtual connections based on e.g. VLAN tags or other header information
Caching/processing with tiered storage

- Collect in-network measurement data and store using different storage tiers:
 - RAM
 - Attached NVMe drive
 - Local rotating storage
 - External (local to the site) large volume rotating storage
In-network AI/ML

- Investigating autonomous network behavior using in-network GPU support
 - Using RTX6000 for learning and inference using streaming data
- Perform intelligent data fusion/processing in the network
- Implement in-network analytics/security functions
Attaching external facilities

- The US NSF has made significant investments in scientific CI
- Future networks must better support domain science needs
- FABRIC connects to a number of facilities and testbeds to enrich the set of resources that can be used in experiments
 - Supercomputing centers (PSC, NCSA, SDSC, TACC, MGHPCC)
 - Cloud testbeds - CloudLab, Chameleon, Open Cloud Testbed
 - 5G testbeds - COSMOS, Powder
- Through FAB we will also reach
 - University of Bristol, University of Amsterdam, University of Tokyo, CERN
Using public clouds in experiments

- Future networks will connect clouds and their customers
- 5G+Cloud experiments
- Through partnership with Internet 2 FABRIC will provide connectivity to commercial clouds
 - Utilize I2 CloudConnect system
Adding experimenter-owned resources

- Many experimenters may be interested in connecting their own resources to their slice topologies
 - FABRIC may not be able to reach every campus with a dedicated connection
- VPN/VPW options will be available to support these cases.
 - Allow experimenters to offer services to others from their slices
FABRIC Testbed Services

- Central to FABRIC are ideas of ‘testbed services’ and ‘experiment profiles’
- **Testbed services** are provided by the testbed
 - A relatively small number of abstractions
 - Reliable
 - Well-understood
- **Experiment profiles** can be created by testbed operators or experimenters and shared with others
 - Contain additional configuration, reproducible building blocks to help build experiments faster
FABRIC Network Services

- FABRIC is not a network, rather a testbed that provides network services
- Provides a variety of options to connect compute slivers into topologies
- L2 point-to-point (GENI-like, but richer)
 - Built on top of MPLS-SR
 - Support for QoS for individual services
 - Port-to-port and site-to-site
 - Does not assume the use of IP
 - Any routing must be built into the experiment via experiment profiles (e.g. OSPF instances or NDN forwarded instances) or built by experimenter by hand
 - Dedicated to individual experiments
- L3 routed
 - Relies on FABRIC’s allocation of public IPv6 addresses
 - Provides high-performance routing using FABRIC’s hardware routers
 - Peers with production networks
 - Shared between multiple experiments
FABRIC Peering

- A combination of testbed services and experiment profiles
- Provides connectivity to other L2 and L3 networks and public clouds
- Peering of the publicly-routable L3 topology
 - Using FABRIC-managed BGP instances
- Programmatic peering with production networks of L2 topologies
 - Using experiment profiles with BGP instances to e.g. peer with commercial cloud VPCs
- Multiple peering points using ESnet and Internet2 infrastructures
FABRIC Measurement Capabilities

- Key to FABRIC being a scientific instrument
- Provides measurements
 - Inside the slice
 - Outside the slice
FABRIC Near-term use-cases

- FABRIC originally proposed several ‘Science Design Drivers’:
 - SRI - Network Security
 - Georgia Tech - 5G/IoT/Network Resilience
 - University of Virginia - ML/Autonomous Network Management
 - FIU - Named Data Networking and AR/5G
- The goal of the design drivers is to help hone requirements and test early capabilities
 - They are meant to be a diverse sampling of the possible experiment space
- FAB brings in several more domain-oriented use-cases
 - Efficient distribution and in-network fusion of astronomical event data
 - LSST/Vera Rubin and CMB-S4
 - Urban Sensing
 - Connecting COSMOS and University of Bristol testbeds
 - Weather science
 - Efficiently distributing data on weather events
 - Computer Science
 - Censorship evasion
 - Private 5G across borders
 - SDX policy negotiation
FABRIC Experiment Workflow

Experiment Phases:

- **Design** - an experiment is imagined and defined
- **Prototyping and development** - experiment software is written and prototyped (in-house, using FABRIC or other testbed hardware)
- **Provision resources** - FABRIC and other resources are acquired and configured via APIs or portal
- **Experiment is run:**
 - Multiple experiment runs include collecting data and modifying resources
- **Termination** - experiment ends, all resources released
- **Saving data** - collected data is retrieved from FABRIC storage
- **Publish** - paper citing FABRIC is prepared, submitted and published
Thank You!

Questions?

Visit https://whatisfabric.net

Ask info@fabric-testbed.net

FABRIC Software: https://github.com/fabric-testbed

This work is funded by NSF grants CNS-1935966, CNS-2029261, CNS-2029235, CNS-2029200, CNS-2029261, CNS-2029250