

GROMACS: An Introduction

Micholas Dean Smith, PhD MRSC

Research Assistant Professor

University of Tennessee, Knoxville & UT/ORNL Center for Molecular Biophysics

What is GROMACS?

- High PerformanceMolecular DynamicsEngine
- Main developers
 located at Royal
 Institute of Technology
 and Uppsala
 University, Sweden
- ~2 Decades of continuous development
- Free, LGPL 2.1

GROMACS

Groningen Machine for Chemical Simulations

Image from GROMACS Reference Manual.

http://manual.gromacs.org/2018-current/manual-2018.8.pdf. Accessed: 9-1-2020

GROMACS Installation

- Required Dependencies: gcc 5.1 or higher, cmake 3.9.6 or higher
- Optional Dependencies (highly recommended): fftw (http://fftw.org/)*, cuda (version >= 9.0, NVIDIA compute capacity 3.0 or better, https://developer.nvidia.com/cuda-toolkit) or OpenCL (optional, version >= 1.3, https://www.khronos.org/opencl/), MPI (must adhere to MPI standard 1.3, openMPI recommended, https://www.open-mpi.org/)
- Really Optional Dependencies: Grace (https://plasma-gate.weizmann.ac.il/Grace/) or qtGrace (https://sourceforge.net/projects/qtgrace/); zlib; BLAS/LAPACK

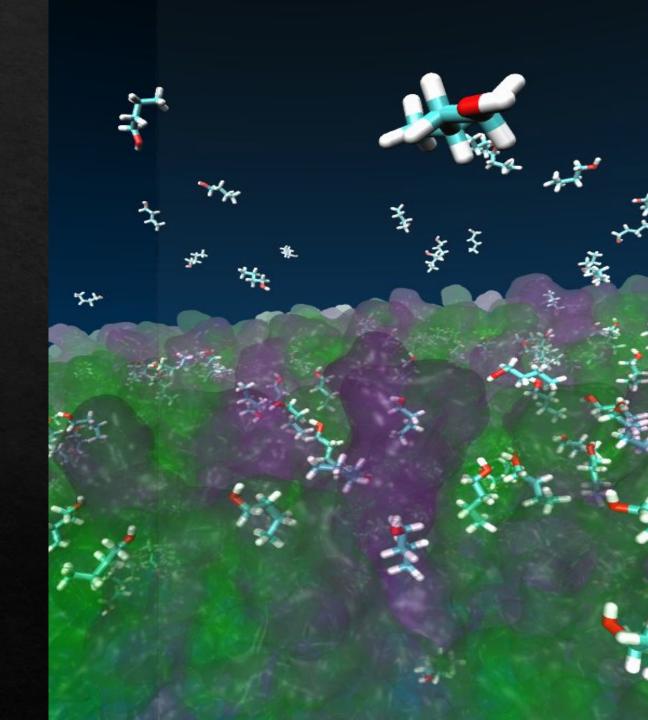
GROMACS Installation: A typical build

From GROMACS 5.0 onward the build production was moved to cmake. General build instructions:

```
wget http://ftp.gromacs.org/pub/gromacs/gromacs-2020.3.tar.gz □ Grab the code tar –xvf gromacs-2020.3.tar.gz cd gromacs-2020.3; mkdir build; cd build; ccmake ../ □ Personal recommendation: use the cmake interactive gui mode the first time you build so you can see all of options and check that cmake is finding the right libraries make –j 8; make –j 8 install make check □ Run regression tests
```

GROMACS Installation: cmake flags of interest

- cmake flags to be mindful of:
 - □ -DBUILD_TESTING □ needed if you want to run the reg. tests. Be sure to also set:
 -DREGRESSIONTEST_DOWNLOAD=ON); Alternatively, you can also get the regression test from:
 http://manual.gromacs.org/current/download.html
 - Detailed instructions on how to run the regression tests are located at:


 http://manual.gromacs.org/current/install-guide/index.html#helping-cmake-find-the-right-libraries-headers-or-programs
 - □ -DGMX_GPU □ If using GPU acceleration be sure this is on
 - □ -DGMX_MPI □ If using MPI to allow for multi-node runs be sure to turn off –DGMX_THREAD_MPI
 - □ -DGMX_SMI □ Confirm that this matches your target architecture to optimize performance
 - □ -DGMX_BUILD_OWN_FFTW=ON □ Instructs GROMACS to download, configure, and install its own FFT3W with appropriate precision. When using a local FFT library (MKL or FFT3W) be sure to check local precision matches target precision of your GROMACS build
 - □ -DGMX_DOUBLE □ For MD simulations with gromacs double precision is not typically used.

GROMACS Installation: points of caution and tips

- cmake is great....when it wants to be
 - Doesn't always play nice with module-based environment management
 - Make sure you use a clean cache when doing a fresh build
- Gromacs specific advice:
 - Stick to gnu compilers
 - ♦ CUDA > OpenCL

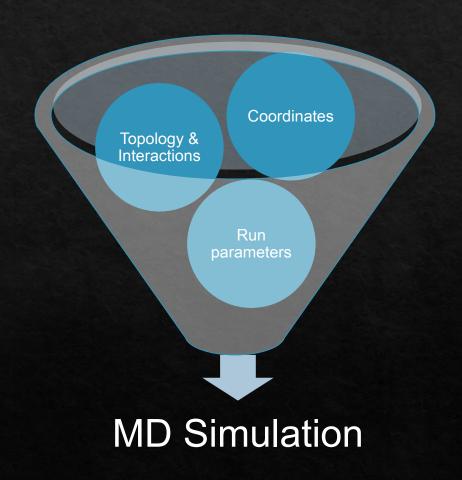
So now what?

- Classical (Newtonian) mechanics treatment of small molecules
- Permits the study of molecular systems composed of hundreds to millions of atoms
- Sample model systems include: biocomposites, membranes, proteins, and liquids

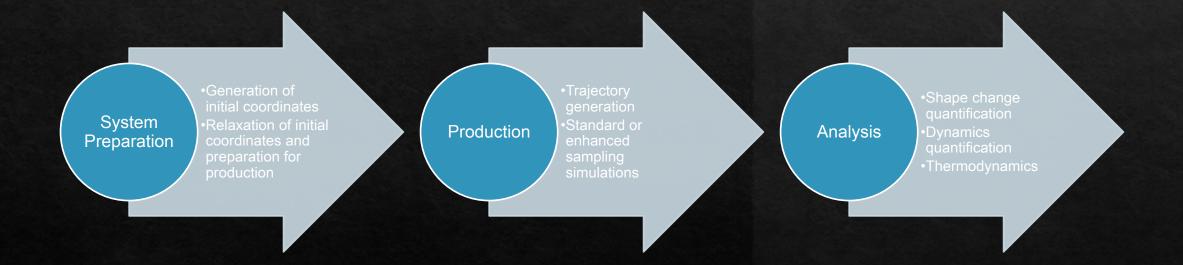
Classical Molecular Dynamics Simulations (MD)

Integrator

Thermostats and Barostats


Classical Molecular Simulations

Non-bonded long range and short range interactions


Bonded Interactions

Key requirements to MD simulations with GROMACS

- GROMACS requires three different input files:
 - 1) Run-parameters
 - Gromacs *mdp files
 - 2) System (atomic) Coordinates
 - * *.pdb or *gro formatted plain-text files
 - 3) System Topology & Interaction Potentials
 - Gromacs specific *.top and/or *.itp files

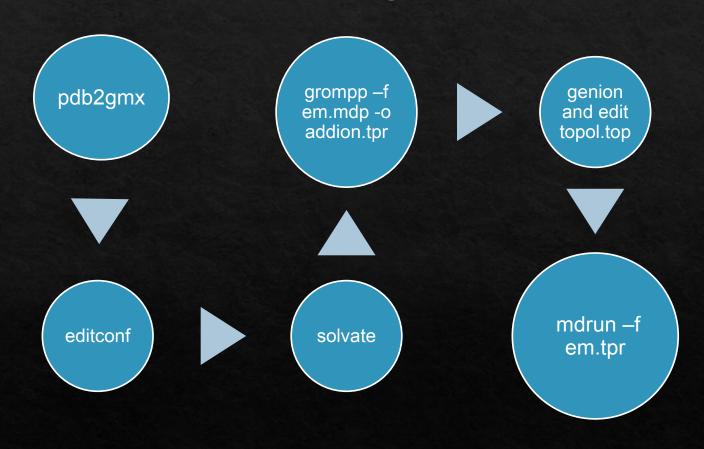
The GROMACS MD workflow

Run parameter files

- Typical MD simulations follow three phases
 - Energy minimization
 - Relaxation
 - Production
- Production Special Cases:
 - Umbrella sampling
 - (Temperature) Replica Exchange

Standard run parameter file

Output and integration options


Thermostat/barostat options

```
define
                         = -DPOSRES
integrator
                         = 125000
nstcalcenergy
nstenergy
nstlog
cutoff-scheme
                        = Verlet
coulombtype
vdwtype
vdw-modifier
                         = Force-switch
rvdw switch
                         = 1.2
ref t
constraints
constraint algorithm
                         = LINCS
comm_grps
                        = yes
                         = 303.15
gen-seed
refcoord scaling
```

Force-field specific cut-offs options

Initialization of velocities

Formatting Coordinates and Obtaining Topologies

Great, so now how do I run a simulation?

- Generic simulation:
 - gmx_mpi mdrun (or gmx mdrun) –s production.tpr –c production_out.gro –e production.edr –v –cpo state_production.cpt –cpi state_production.cpt –cpt 1 –o production.trr –g production.log
- Multi-copy (same production different random seeds, atomic positions, or different temperatures):
 - for((i=0;i<NumberOfCopies;i++));do mkdir window_0"\$i"; cp production_"\$i".tpr window_0"\$i"/production.tpr;done
 - gmx_mpi (or gmx mdrun) -s production.tpr -c production_out.gro -e production.edr -g production.log -cpo state_production.cpt -cpi state_production.cpt -cpt 1 -o production.trr -g production.log -muldir `ls -d window_0*`

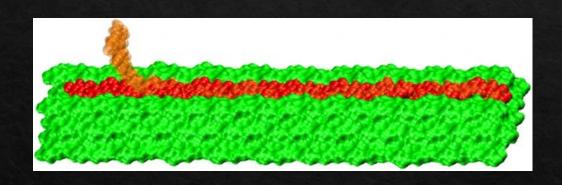
Great, so now how do I run a simulation?

- Generic simulation:
 - gmx_mpi mdrun (or gmx mdrun) –s production.tpr –c production_out.gro –e production.edr –v –cpo state_production.cpt –cpi state_production.cpt –cpt 1 –o production.trr –g production.log
- Multi-copy (same production different random seeds, atomic positions, or different temperatures):
 - for((i=0;i<NumberOfCopies;i++));do mkdir window_0"\$i"; cp production_"\$i".tpr window_0"\$i"/production.tpr;done
 - gmx_mpi (or gmx mdrun) -s production.tpr -c production_out.gro -e production.edr -g production.log -cpo state_production.cpt -cpi state_production.cpt -cpt 1 -o production.trr -g production.log -muldir `ls -d window_0*`

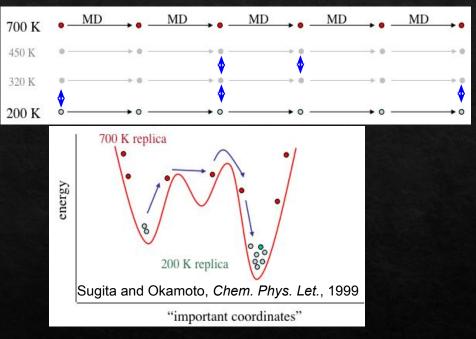
Great, so now how do I run a simulation?

- So what do those flags mean?
 - -s system input file (gromacs binary topology file tpr format)
 - o trajectory file (gromacs trr format)
 - -cpo , -cpi, -cpt (-cpo/-cpi -> checkpoint file output/input, cpt binary files -> checkpoint save frequency)
 - □ -g logfile (plain text □ necessary for some forms of post-processing T-REMD)
 - -e energy file (records system energy terms and thermostat/barostat behavior, binary gromacs edr format)
 - □ -multidir □ list of directories with input tpr and output files
 - □ -replex □ special flag for T-REMD simulations, sets step interval for exchange trials

Performance related flags


- gmx mdrun has a number of performance related options
 - □ __nb □ non-bonded force calculation on cpu, gpu, auto
 - □ -pme □ electrostatics particle mesh ewald, gpu or cpu, or auto
 - □ -pmefft □ perform FFT on gpu or cpu (or auto assign) for PME
 - □ -bonded □ perform bonded force calculations on gpu, cpu, or auto assign
 - □ -update □ perform integration (update) on gpu or cpu
 - -ntomp □ number of openMP threads per MPI rank
 - -ntomp_pme □ number of openMP threads per MPI rank dedicated to PME
 - □ -pin, pinoffset, pinstride □ let gmx mdrun set thread affinities *Should be used with caution

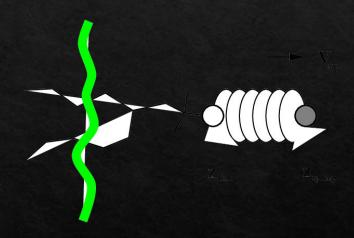
 - -dd ☐ manually set domain decomposition
 - □ -ddorder □ rank-order of domain decomposition
 - □ -gpu-id □ list of unique gpu ids
 - □ -gputasks □ manual mapping of gpu device IDs to PP task on each node


Things to keep in mind for performance

- GPU off-loading is a good thing
- gmx tune_pme can be helpful for quick benchmarking and run tuning:
 - http://manual.gromacs.org/current/onlinehelp/gmx-tune_pme.html
- "Write" just often enough
 - Unless you are tasked with looking at very fast relaxations: don't write every integration step, every 5 to 10ps (~2500 to 5000 integration timestep of 2fs) is normally sufficient for most structural analysis of proteins.
 - Appending continuations to trajectories vs separate trajectories?
- Multiple MD simulations are typically needed
 - Many single node jobs vs a few multi-node jobs? (Which gives the best bang-for-your-buck)

MD Simulation: Two Special Cases

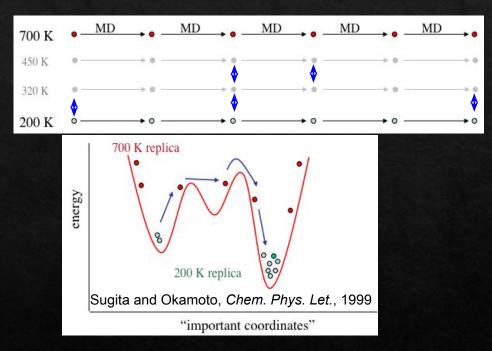
Pulling with an external force



Partly adopted from Dr. Ronald M. Levy

Temperature Replica-Exchange

MD Special Case: Pulling

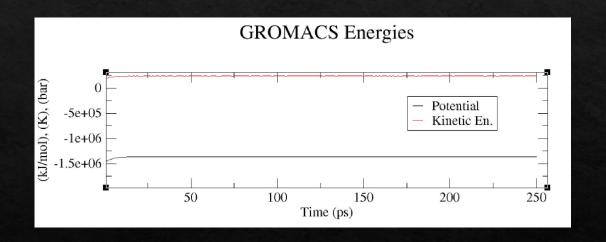

- Simulations where an external force is applied to a specified set of atoms
- Goal: obtain estimate of binding free-energy (useful for drug discovery, alternative methods also exist)
- Additional terms in mdp (run parameter files) (see: http://manual.gromacs.org/2019/user-guide/mdp-options.html#mdp-pull-ngroups for complete details).
 - pull=yes
 - pull-nstxout
 - pull-nstfout
 - pull-ngroups
 - pull-coord1-type
 - pull-coord1-dim
 - pull-coord1-vec
 - ♦ Pull-coord1-k

mage from GROMACS Reference Manual. http://manual.gromacs.org/2018-current/manual-18.8.pdf. Accessed: 9-1-2020

MD Special Case: T-REMD

- Coupled multi-temperature simulations
- Goal: enhance sampling (potentially useful for drug discovery)
- Demands: many multiple simulations
- No additional terms in mdp (run parameter files)
- Requires careful choice of temperature intervals for proper exchanges

Partly adopted from Dr. Ronald M. Levy


Analysis: Getting something out of MD

- The point of MD is to "measure" something.
 - Diversity of pocket sizes?
 - Hydrogen bonding?
 - How well two different polymers bind to one-another
- In the end: simulations are only 70% of the work
- Main problem: analysis code is generally not optimized.

Analysis: Getting something out of MD

Main steps:

- Check system for simulation stability
 - gmx energy
- Generation of Index files
 - gmx make_ndx or gmx select
- Calculate molecular features:
 - gmx hbonds
 - gmx sas
 - gmx gyrate

Troubleshooting Crashes

- Two types of crashes:
 - Unstable MD system
 - Check to see if system was properly minimized
 - Confirm thermostat/barostat are not suffering large fluctuations
 - Reduce integration timestep
 - Hardware failure => File corruption
 - Restart with previous checkpoint (default name: state_prev.cpt)
- Checkpoint often!
- Consider including –noappend with gmx mdrun

Where to go for more help

- GROMACS How-To Guides:
 - http://manual.gromacs.org/current/how-to/index.html
- GROMACS User Manual:
 - http://manual.gromacs.org/documentation/current/user-guide/index.html#user-guide
- GROMACS Forum:
 - https://gromacs.bioexcel.eu/
- Developer's Guide (for those that want to tinker)
 - http://manual.gromacs.org/current/dev-manual/index.html

Q & A