Quantifying the Overheads of the Modern Linux
I/0 Stack

Luke Logan, Anthony Kougkas, and Xian-He Sun
Department of Computer Science, Illinois Institute of Technology, Chicago, IL
llogan@hawk.iit.edu, akougkas@iit.edu, sun@iit.edu

Index Terms—I/O Bottleneck, Filesystems, Linux

I. EXTENDED ABSTRACT

Linux is the foundation of 9 of the top 10 public clouds [1]
and all Top500 supercomputers [2]. Several distributed storage
services such as Object Stores, Parallel File Systems, and
Databases (e.g., OrangeFS [3]) largely rely on the Linux
I/O stack for their storage needs. They store data using the
UNIX file representation and access these files using the
POSIX interface that Linux provides. Thus, the performance
of the Linux I/O stack is critical to the performance of these
applications as a whole. However, recent research has shown
that the Linux I/O stack introduces multiple overheads that
significantly reduce and randomize the performance of 1/O
operations. Cao et al. (2017) [4] found that, for multiple
workloads and filesystems, running the same exact workload
multiple times on the same filesystem configuration resulted in
performance variations of as much as 40% between runs and
that the performance variation was especially chaotic when
the underlying storage device was an HDD, as opposed to an
SSD. It was found that lazy block allocation and randomization
of the block layout on disk were major contributors to this
variation. Furthermore, the Linux I/O stack is programmed for
slower storage devices and is shown to cause significant perfor-
mance overheads for fast storage like NVMe and SSD [5]. For
this reason, multiple services that bypass the Linux I/O stack
for these particular devices have been proposed [5], [6]. While
some research has been conducted into identifying the source
of performance concerns and some tools have been built to
bypass these overheads in certain cases, not much research has
been conducted into quantifying the software overheads in the
Linux I/O stack. This is important to understanding whether
or not the I/O stack needs to be completely redesigned for
HPC and Cloud systems.

In this research, we quantify the software overheads in the
Linux I/O stack by tracing the POSIX read ()/write ()
system calls on various storage devices and filesystems. By
comparing the amount of time spent in software versus the
amount of time spent in performing I/O, we can gain insight on
how much overhead the Linux I/O stack produces and explore
solutions that can mitigate the overheads.

II. THE LINUX I/O STACK

In the Linux I/O stack (up to version 5.8, shown in Figure
2 of the poster), the user reserves a chunk of virtual memory

using an allocator function (e.g., malloc () ) and then passes
this virtual address, along with a length and file descriptor, to
POSIX I/O syscalls such as read () or write (). When this
happens, the Virtual File System (VFES) Layer takes over.

The VFES Layer is mainly responsible for updating file
metadata and for journaling (if applicable). File metadata is
stored in a struct inode, which contains information such
as timestamps, the owner of the file, and the mapping between
file offsets and disk blocks. The set of disk blocks to be
accessed in the I/O request are identified using this inode.
After the file metadata has been updated, the set of disk blocks
and the user’s buffer are passed either to the Page Cache or
to the Direct I/O (DIO) Layer. At this point, Block I/O (BIO)
requests (of type struct bio) will be constructed that will
either flush pages to the disk or read pages from the disk.
A single BIO associates an array of pages in RAM with a
contiguous set of disk blocks to either be read or modified. If
the Page Cache is used, BIOs will be constructed using pages
from the cache. Otherwise, the user’s buffer is converted into
an array of pages (using get_user_pages ()) and then
used in the BIOs. The BIOs will then be passed to the BIO
Layer using submit_bio ().

The BIO Layer [7] is mainly responsible for plug-
ging/merging/splitting BIOs and for passing BIOs to the
Request Layer. Plugging is a mechanism temporarily prevents
BIOs from being scheduled in the Request Layer so that they
can be merged to form larger, contiguous BIOs and reduce
the number of small requests. Splitting is used to divide BIOs
that are too large for the underlying device to handle. After
the plug is finished, the BIOs are converted into “requests” (of
type struct request) and passed to the Request Layer in
blk_finish_plug() or io_schedule ().

The Request Layer [8] is responsible for scheduling requests
and passing requests to the device drivers. There are two types
of schedulers: Single-Queue (SQ) and Multi-Queue (MQ).
SQ is designed for devices that can’t handle concurrent I/O
requests such as HDD. MQ is designed for both kinds of
devices. Either way, the requests in the queues get ordered
according to some policy and then passed to the device drivers.
The device drivers are ultimately responsible for interacting
with the device and handling interrupts.

III. QUANTIFYING OVERHEADS

Approach: To capture the impact of the software over-
heads in the Linux I/O stack, we clear the OS page cache



: {=

"name": "ext4 direct IO",

"value": 2398220.1420000005,

"children": {=

*__blockdev_direct_I0": {:=

"name”: " blockdev direct I0",
"value": 2395765.459,
"children": {C

1 {E
"name": "bio_add page",
"value": 489843.04300004675,
"children": {&--}

: {E
"name": "submit bio”,
"value": B885274.0589999991,
"children": {&--}

1=
"name”: "io_schedule”,
"value": 734777.804,
"children": {=

Fig. 1. Function graph of 100MB write () to SSD where value is in us

and then perform either sequential reads or writes of 1GB
for various block sizes (4KB, 64KB, 1MB, 10MB, 100MB)
using the read()/write() system calls on files opened with the
O_DIRECT flag (in order to bypass the Linux Page Cache).
We bypass the page cache so that we can compare the amount
of time spent in software and the maximum amount of time
spent in I/O. We also vary whether or not the file was allocated
in the filesystem. Furthermore, we perform this experiment on
various filesystems (EXT4 and XFS) and storage devices (SAS
HDD and SATA SSD). We used trace—cmd [9] in order to
trace the system calls and produce a function graph of them.
Lastly, we implemented a kernel module that demonstrates
the performance improvement of removing the overheads in
the VFS and DIO layers when performing I/O by timing the
period between the BIO submission and the completion of the
I/0.

Testbed: We performed our tests on Chameleon Cloud [10]
using a Compute Haswell Node and a Compute Skylake
Node. The Haswell Node contains a single 250GB, 7200 RPM
SAS HDD and a 2.3GHz 12-core/24-thread Intel Xeon CPU.
The Skylake Node contains a single 240GB SATA SSD and
a 2.6GHz 12-core/24-thread Intel Xeon CPU. We ran our
experiments on Ubuntu 18.04 with Linux 4.15.0-101-generic.

Results: Due to the limited space of this submission, we
will focus on the results obtained from sequentially writing
100MB of data to a preallocated file located on an SSD with an
EXT4 filesystem. From Figure 1, we see that 20% of the time
was spent in bio_add_page () (489,843 of the 2,398,220
us). We also found an additional 6% was spent in splitting
and merging BIOs (not shown in the figure). Thus, at least
26% of the time consumed by write () is spent in software
operations required by the Linux I/O Stack.

IV. CONCLUSION AND NEXT STEPS

From our experiments, we see that a large fraction of
time spent in I/O is spent in constructing BIOs and split-
ting/merging BIOs. For these reasons, we believe that these
software overheads are significant. Thus, our next step is
to devise a way to bypass these overheads. There are three
general categories of methods for bypassing the overheads

of the current Linux I/O stack: 1) Other Linux APIs: Linux
includes other interfaces for performing I/O outside of POSIX,
such as Memory-Mapped I/O (MMIO) and Direct Access
(DAX) to files. They map blocks of the storage device into
the user’s address space. Instead of using explicit system calls,
page faults are used to perform I/O. However, MMIO/DAX
can’t map entire storage devices into RAM and they incur
other overheads such as creating Page Table Entries. 2)
Linux Kernel Modules: Linux Kernel Modules can be used
to expose the underlying device drivers or even communicate
with the hardware itself. However, kernel modules can be
hard to program and maintain, especially when kernel APIs
change from version to version. 3) Alternate (non-Linux)
Kernel Architectures: Servers could switch from Linux to a
completely different kernel. Linux is a monolithic kernel, and
includes a lot of functionality, such as filesystems and device
drivers, in order to make it portable to a large and diverse
population. However, alternate kernel architectures such as
Microkernels and Unikernels exist that allow users to build
highly specialized operating systems tailored for a certain
purpose. No I/O stack is provided by these types of kernels.
However, these kernels are typically only used with the help
of Hypervisors due to limited driver support.

In summary, we showed the potential to boost the per-
formance of a storage server by quantifying the software
overheads of the existing Linux I/O stack and proposed several
ways to bypass these overheads. Given this, we plan to design
and develop a new, high-performance, lightweight, and robust
storage software stack for data-intensive computing and its
new data representations.

REFERENCES

[1] RedHat, “The state of linux in the public cloud for enterprises.” RedHat,
2017. [Online]. Available: https://www.redhat.com/en/resources/state-
of-linux-in-public-cloud-for-enterprises

[2] Top500.org. Top500, June 2020. [Online]. Available:
https://www.top500.org/lists/top500/2020/06/
[3] “Orangefs.” OrangeFS, 2020. [Online]. Available:

http://www.orangefs.org/

[4] Z. Cao, V. Tarasov, H. P. Raman, D. Hildebrand, and E. Zadok,
“On the performance variation in modern storage stacks,” in 15th
USENIX Conference on File and Storage Technologies (FAST 17).
Santa Clara, CA: USENIX Association, Feb. 2017, pp. 329-344.
[Online]. Available: https://www.usenix.org/conference/fast]7/technical-
sessions/presentation/cao

[5] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “Spdk: A development kit to build
high performance storage applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2017, pp. 154-161.

[6] 1. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam, “I'm
not dead yet! the role of the operating system in a kernel-bypass
era,” in Proceedings of the Workshop on Hot Topics in Operating
Systems, ser. HotOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 73-80. [Online]. Available:
https://doi.org/10.1145/3317550.3321422

[71 N. Brown, “A block layer introduction part 1: the bio layer” LWN,
2017. [Online]. Available: https://lwn.net/Articles/736534/

[8] ——, “Block layer introduction part 2: the request layer.” LWN,
2017. [Online]. Available: https://lwn.net/Articles/738449/

[9] S. Rostedt, “trace-cmd.” RedHat, 2010. [Online]. Available:

https://man7.org/linux/man-pages/man1/trace-cmd. 1.html

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC °20). USENIX Association, July
2020.

[10]



