Distributed BERT Pre-Training & Fine-Tuning With Intel Optimized Tensorflow on
Intel Xeon Scalable Processors

Muhammed Emin Ozturk
Computer Science
University of Utah

Salt Lake City, Utah

Wei Wang

Intel Corporation

Abstract—Distributed computing has become a key component
in the field of Data Science, allowing for faster prototyping
and accelerated time to market of numerous workloads. This
work examines the distributed training performance of BERT,
a state of the art language model for Neural Language Pro-
cessing (NLP), in the tasks of pre-training and fine-tuning on
general-purpose Intel CPUs. The effects using Intel-optimized
TensorFlow optimizations on Intel Architectures with both
FP32 and BFLOAT16 floating-point format are included in the
analysis. Results show that the distributed TensorFlow BERT
model with LAMB optimizer can maintain high accuracy while
getting good performance speedups from scaling to a larger
amount of Intel Xeon CPUs.

1. Introduction and Motivation

Advances in Natural Language Processing (NLP) have
greatly benefited from Deep Learning progress over over
a couple of years. Ian Tenney et al. [1] describes improve-
ments which have been made to the traditional NLP pipeline
using Transformer [2] models, Bidirectional Encoder Rep-
resentations from Transformers (BERT) [3] in particular.
The latter model has become increasingly popular as a go-
to architecture for many text processing solutions mostly
due to it’s innovative approach to training. BERT’s training
is split into two phases, which allows for applying it to
problems without abundance of domain related data. In the
first phase the model is pre-trained on a large corpus of
generic data, allowing for obtaining relations between words
and sentences, and only in the second phase a fine-tuning
on a smaller domain related dataset takes place.

With the increasing importance of Machine Learning
(ML) across industries, a whole new market for hardware ac-
celerated ML has been created [4]. To provide a fair compar-
ison of such accelerators, MLPerf [5] has been introduced
to provide a standardized way of measuring their training
and inference performance. In the most recent revision [6]
MLPerf has been extended to include BERT in its training
benchmark suite.

This work presents BERT pre-training and fine-tuning
training with distributed TensorFlow (with Horovod) on
Intel CPUs and shows the results in terms of accuracy and

Santa Clara, California

Lei Shao
Intel Corporation
Santa Clara, California

Maciej Szankin
Intel Corporation
San Diego, California

performance speedups. This study also is one of the first
attempts to gain insights into BERT’s training in BFLOAT16
precision on Intel Xeon scalable processors.

2. BERT: Bidirectional Encoder Representa-
tions from Transformers

BERT is considered as a milestone achievement in Nat-
ural Langugate Processing (NLP) community due to the fact
that it outperforms previously proposed methods [7]. BERT
model training usually contains two steps: Pretrainig and
Fine-tuning [7]. We used Wikipedia dataset for BERT Pre-
Training and SQuAD vl.1 dataset for BERT Fine-Tuning
due to their free availability. In this work, we experimented
with BERT-Large. BERT-Large model consists of 24 layers,
16 attention heads and 340 million parameters. BERT-Large
is compute intensive and it requires more time to be trained.
Hence, we enabled distributed BERT-Large training with
LAMB optimizer on Intel Xeon CPUs to evaluate the results.

3. Methodology

3.1. Intel-Optimized TensorFlow

TensorFlow framework is open-source and is maintained
by Google. Intel optimized TensorFlow targeting Intel Xeon
architectures by integrating oneAPI Deep Neural Networks
(oneDNN) into TensorFlow and performing various other
optimizations including graph fusions etc. oneDNN comes
with high-performance DNN kernels that support various
data types including FP32, INT8, and Bfloatl6. In this
work, we focus on evaluating FP32 and Bfloat16 with Intel-
optimized TensorFlow on BERT.

3.2. Distributed Training With TensorFlow And
Horovod

Data parallelism is a popular approach to distributed
DNN training. On Intel Xeon processors, distributed training
with TensorFlow usually employs horovod [8]. We enabled
distributed BERT training by adding the horovod APIs. One
important issue to solve with data parallelism is that it

could cause accuracy degradation with the default Adam
optimizer. Training BERT with large batch without losing
accuracy is possible with LAMB optimizer as introducted
by You et al. [9]. Hence, LAMB optimizer was used in
experiments. Several Learning Rate (LR) and Batch Size
(BS) are tested for Pre-Training & Fine-Tuning in this
work. Since Intel optimized TensorFlow enabled Bfloatl6
support, we also experimented BERT distributed training
with Bfloatl6 data type with distributed training.

3.3. Experimental Setup

We experimented distributed FP32 BERT Fine-Tuning
and Pretraining with up to 128 Intel® Xeon® Platinum
8260L CPUs, each of which had 24 cores. For BFLOAT16
BERT Fine-Tuning & Pre-Training, we used a machine
with 8 socket Intel® Xeon® Platinum 8380 CPUs inside.
Each CPU had 28 cores. We used an Intel-optimized Ten-
sorFlow version that featured the best Bfloat16 and FP32
support which can be found via https://github.com/Intel-
tensorflow/tensorflow/tree/bf16/base. The horovod version
was 0.19.1. We set and tune the following OpenMP en-
vironment variables to gain maximum performance on In-
tel architectures: KMP_AFFINITY, KMP_BLOCKTIME,
OMP_NUM_THREADS. We also set the following flags
to take advantage of the graph level parallelism and op-
erator level parallelism: intra_op_parallelism_threads and
inter_op_parallelism_threads.

4. Experimental Results

Two fundamental metrics were used for evaluating the
distributed BERT training performance with Intel optimized
TensorFlow on Intel Xeon architectures: 1) the accuracy
of the trained models, i.e., the F1 score and Exact-Match
for fine-tuning task (SQuAD question-answering), and the
masked language model (LM) accuracy and training loss for
pretraining task 2) the performance speedup as compared
to the baseline performance on a single machine with dual
socket Intel Xeon CPUs.

4.1. BERT Fine-Tuning Results

Machine | #N | #PPN | #MPI | GBS | F1 EM Speedup
CLX2S 1 2 2 64 93.01 | 86.74 | Ix
CLX4S 1 4 4 128 93.16 | 86.96 | 1.9x
CLX4S 2 4 8 256 9291 | 86.67 | 3.45x
CLX2S 8 2 16 512 92.89 | 86.68 | 6.21x
CLX2S 16 | 2 32 1024 | 92.35 | 86.18 | 9.5x
CLX2S 32 |2 64 2048 | 92.11 | 85.7 19x
CLX2S 64 | 2 128 4096 | 91.82 | 8522 | 41.3x

TABLE 1. DISTRIBUTED BERT FINE-TUNING TRAINING RESULTS:
ACCURACY & SPEEDUP WHEN INCREASING THE AMOUNT OF CPUs
AND MPI WORKERS (ONE MPI WORKER PER CPU). CLX REFERS TO
THE INTEL XEON PLATINUM 8260L CPUS AND 2S/4S MEANS
DUAL-SOCKET AND FOUR-SOCKET SYSTEMS RESPECTIVELY.

We completed FP32 BERT Fine-Tuning experiment on
a cluster of CLX2S and CLX4S machines using distributed
Intel-BERT model with horovod and FP32/BF16 support.
The CLX2S and CLX4S contains dual-socket and four-
socket Intel Xeon Platinum 8260L, respectively. For fine-
tuning, we increased the number of MPI processes from 2
to 128 while keeping the mini-batch size at 32. As shown
in Table 1, even with a global bacth size (GBS) of 4096
(with 128 MPI workers), it achieved high accuracy with
nice speedups (up to compared to the two socket baseline.
In addition to accuracy evaluation of FP32 BERT Fine-
Tuning with up to 64 CLX nodes, we also tested BFLOAT16
precision BERT Fine-Tuning performance on the 8S CPX
machine. Speedups and accuracy metrics comparing with
the two socket CLX baseline are shown in Table 2. Clearly,
Bfloat16 achieved about 3x-4x speedup without losing ac-
curacy.

Machine | #N | #PPN | #MPI | GBS | F1-S EM Speedup
CPX8S 1 2 2 64 9296 | 86.58 | 3.8x
CPX8S 1 4 4 128 93.04 | 86.79 | 7.6x
CPX8S 1 8 8 256 93.02 | 86.98 | 12.6x

TABLE 2. BERT FINE-TUNING TRAINING RESULTS (ACCURACY AND
SPEEDUP) WITH BF16 ON 8S CPX SYSTEM AS COMPARED TO 2S CLX
SYSTEM.

4.2. BERT Pre-Training

4 0.8

w
o
@

Loss
~
=
g

Masked LM Accuracy

,_.
o
o

1370 2740 4110 5480 6850 8220 9590 10960
Global Steps

=055 FP32 Loss BF16 ~ =mmMasked LM Accuracy FP32 ===Masked LM Accuracy BF16

Figure 1. BERT Pre-Training Accuracy VS Global Steps For FP32 and
BF16

For BERT pretraining, we adopted Google’s 16 TPU
worker hyper-parameter in MLPerf v0.7 training submission
and tested with Bfloatl6 on 8S CPX and FP32 on 16
CLX machines. As shown in Fig.1, accuracy metrics are
tracked with respect to global steps. Our main goal for pre-
training experiment was reaching MLPerf requirement of
0.712 masked LM accuracy. We evaluated every 1370 steps
and observed both FP32 and Bfloat16 training surpassed the
accuracy metric. We are investigating why FP32 converged
faster (in terms of epochs) than BF16 as shown in Fig. 1.

References

[1] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical nlp
pipeline,” arXiv preprint arXiv:1905.05950, 2019.

(2]

(3]

(4]

[3]

(6]

(71

(8]

[91

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998—
6008.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

Z. Li, Y. Wang, T. Zhi, and T. Chen, “A survey of neural network
accelerators,” Frontiers of Computer Science, vol. 11, no. 5, pp. 746—
761, 2017.

P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “Mlperf
training benchmark,” arXiv preprint arXiv:1910.01500, 2019.

P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang et al., “Mlperf:
An industry standard benchmark suite for machine learning perfor-
mance,” IEEE Micro, vol. 40, no. 2, pp. 8-16, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, , and C.-J. Hsieh, “Large batch optimization
for deep learning: Training bert in 76 minutes,” ICLR, 2020.

