
 NetGraf: A Collaborative Network Monitoring Stack for Network
……Experimental Testbeds

Divneet Kaur1, Bashir Mohammed (advisor)2, Mariam Kiran (advisor)2
1University of California San Diego, 2Lawrence Berkeley National Laboratory

We would like to thank Paul Ruth of
the Chameleon project for his
technical support in setting up the
environment.

Motivation : Network performance monitoring (NPM) is the process of visualizing, monitoring, optimizing,
troubleshooting and reporting the service quality of your network as experienced by your users [1]. NPM tools collect data
such as network flow data to monitor a network’s performance. Commonly, many NPM tools are used to get a holistic
view of the network infrastructure. However, multiple dashboards have to be used to visualize network statistics from
several NPM tools.
Goal : NetGraf is a collaborative cloud network monitoring stack which collects, analyzes and aggregates relevant network
measurement data and extracts relevant information which is visualized on a single Grafana dashboard to provide a
holistic view of the network system in order to obtain valuable insights in order to identify abnormal behavior in network
system and improve it.

The architecture consists of three modules:
 a) Network and Application Module :
Shows network topology deployed on
the Chameleon testbed 
 b) Collector and Aggregator Module :  
Monitoring Tools :
•ntopng and netdata - installed on all nodes in our network to
get a global view.

•Prometheus - installed on one node as it
 can scrape metrics from multiple sources
•Zabbix - installed on one node as it collects
server related metrics.

•perfSONAR - installed once on Texas and  
Chicago site as it works on end-to-end networks.  
Storing Collected Data :

•ntopng and netdata - connected to InfluxDB, a database optimized for storing time-series data.
•Prometheus and Zabbix - contain an inbuilt database where collected data is stored.
•perfSONAR - collected results are archived in a relational database, postgreSQL.
 c) Monitoring and Visualization Module : To generate visualizations from the metrics stored in our central database,
we created an Application Programming Interface between the databases and Grafana. This API was established by
adding different databases present in Influxdb and postgreSQL as datasources in Grafana. Desirable metrics were then
queried from different monitoring tools in order to get all the network performance statistics in one dashboard.
Elimination Process : Due to a large number of metrics collected, the elimination process helped us to select
metrics related to network like traffic, throughput and loss. This helped create an efficient dashboard.

We have presented a unique
monitoring approach which is able to
collect, store, monitor and identify a
networks performance by solving the
heterogeneity of diverse network
monitoring tools mainly in terms of
resource relationship and sub-system
levels and visualizing them all in a
single dashboard. We created 2 users -
admin and viewer to allow many
people to view dashboard. In future
works, we will develop a pipeline and
apply machine learning algorithms to
the data collected to give us more
insights in terms of network
performance and availability analysis

Caption

Caption

A snapshot of network metrics data collected, aggregated and visualized in real time in Grafana
by five nodes from Chameleon testbed located at Chicago

Acknowledgments

 Introduction Architecture

Results

Conclusion
and

Further Work

Try me!
 Username : viewer
 Password : viewer
NetGraf all-in-one Network Traffic Dashboard

Dashboard

To connect the NPM tools to Grafana in order to generate visualizations we used two other approaches :-
• Connected the NPM tools to Prometheus which was in turn connected to Grafana. We received node metrics such
as CPU storage which didn’t fulfill our purpose of getting network data.

• We fed the data directly to Grafana using Grafana plugins. This approach was not ideal as not all tools have direct
plugins. Also, due to lack of a central database, the collected data would not be accessible in the long run.

What did not work
[1] S. Narayana, A. Sivaraman, V.
Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim,
“Language-directed hardware design
for network performance monitoring,”
in Proceedings of the Conference of the
ACM Special Interest Group on Data
Communication, pp. 85–98, 2017

References

 Methodology

